吉林大学学报(理学版) ›› 2020, Vol. 58 ›› Issue (3): 470-478.

• 数学 • 上一篇    下一篇

 一种改进的三维子空间极小化共轭梯度法

刁新柳, 刘红卫, 赵婷   

  1. 西安电子科技大学 数学与统计学院, 西安 710126
  • 收稿日期:2019-09-04 出版日期:2020-05-26 发布日期:2020-05-20
  • 通讯作者: 刘红卫 E-mail:hwliuxidian@163.com

An Improved ThreeDimensional SubspaceMinimization Conjugate Gradient Method

DIAO Xinliu, LIU Hongwei, ZHAO Ting   

  1. School of Mathematics and Statistics, Xidian University, Xi’an 710126, China
  • Received:2019-09-04 Online:2020-05-26 Published:2020-05-20
  • Contact: LIU Hongwei E-mail:hwliuxidian@163.com

摘要: 利用满足修正割线方程的Hessian矩阵近似二次模型中的Hessian阵, 通过在三维子空间中极小化此二次模型导出搜索方向, 并结合非单调线搜索策略和重启技术, 提出一种改进的三维子空间极小化共轭梯度算法, 并在一些合理假设下, 证明了算法的全局收敛性. 针对Andrei测试函数集, 数值实验验证了新算法的有效性.

关键词: 大规模无约束优化, 共轭梯度法, 修正割线方程, Wolfe线搜索, 全局收敛性

Abstract: The Hessian matrix in a quadratic model was approximated by a Hessian matrix satisfying the modified secant equation, and the search direction was derived by minimizing the quadratic model in a threedimensional subspace. Combined with some nonmonotonic line search strategies and restart techniques, we proposed an improved threedimensional subspace minimization conjugate gradient algorithm. Under some reasonable assumptions, the global convergence of the algorithm was proved. For the test function set named Andrei, numerical experiment verified the effectiveness of the new algorithm.

Key words: largescale unconstrained optimization, conjugate gradient method, modified secant equation, Wolfe line search, global convergence

中图分类号: 

  • O221.2