吉林大学学报(理学版) ›› 2020, Vol. 58 ›› Issue (3): 486-492.

• 数学 • 上一篇    下一篇

一类分数阶比例时滞微分方程的数值计算方法

王林君, 张路   

  1. 江苏大学 理学院, 江苏 镇江 212013
  • 收稿日期:2019-09-02 出版日期:2020-05-26 发布日期:2020-05-20
  • 通讯作者: 王林君 E-mail:wanglinjun@ujs.edu.cn

Numerical Calculation Method for a Class ofFractional Pantograph Delay Differential Equations

WANG Linjun, ZHANG Lu   

  1. Faculty of Science, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China
  • Received:2019-09-02 Online:2020-05-26 Published:2020-05-20
  • Contact: WANG Linjun E-mail:wanglinjun@ujs.edu.cn

摘要: 基于一类正交多项式可替代Legendre多项式(alternative Legendre polynomials, ALPs), 提出一类分数阶比例时滞
微分方程的数值计算方法. 首先, 利用ALPs的性质得到分数阶微积分的数值逼近结果, 然后将分数阶比例时滞微分方程转化为代数系统进行求解. 其次, 对该方法进行误差分析, 得到了方法的收敛性结果. 最后, 给出数值例子验证所给方法的有效性和精确性.

关键词: 可替代Legendre多项式(ALPs), 分数阶, 比例, 时滞微分方程, 数值解

Abstract: Based on a class of orthogonal polynomials, alternative Legendre polynomials (ALPs), we proposed a numerical calculation method for fractional pantograph delay differential equations. Firstly, we obtained the numerical approximation results of fractional calculus by using the properties of ALPs. Secondly, we  transformed the fractional pantograph delay differential equations into the  algebraic system for obtaining solution. Thirdly, we analyzed  the error  of the method  and obtained the convergence results of the method. Finally, some numerical examples were given to verify the effectiveness and accuracy of the proposed method.

Key words: alternative Legendre polynomials (ALPs), fractional order, pantograph, delay differential equation, numerical solution

中图分类号: 

  • O241.81