吉林大学学报(理学版) ›› 2020, Vol. 58 ›› Issue (6): 1303-1308.

• • 上一篇    下一篇

一类离散可积系统的孤子解

樊方成1, 周冉2   

  1. 1. 闽南师范大学 数学与统计学院, 福建 漳州 363000; 2. 吉林大学 数学学院, 长春 130012
  • 出版日期:2020-11-18 发布日期:2020-11-26
  • 通讯作者: 樊方成 fanfc16@mails.jlu.edu.cn

Soliton Solutions of a Class of Discrete Integrable Systems

FAN Fangcheng1, ZHOU Ran2   

  1. 1. School of Mathematics and Statistics, Minnan Normal University, Zhangzhou 363000, Fujian Province, China;
    2. College of Mathematics, Jilin University, Changchun 130012, China
  • Online:2020-11-18 Published:2020-11-26

摘要: 利用Darboux变换方法讨论一类离散可积系统. 先从新的初始解出发, 利用Darboux变换给出方程的精确解, 然后选择适当的参数, 给出方程的1-钟型孤子解、 1-扭结型孤子解、2-反钟型孤子解和周期解, 并给出其图像, 通过这些图像分析这些解的结构、弹性与非弹性碰撞.

关键词: 离散可积系统, Darboux变换方法, 孤子解

Abstract: By using Darboux transformation method, we discussed a class of discrete integrable systems. Starting from a new initial solution, the exact solutions of the equation were given by using Darboux transformation, and then the 1-bell-shaped soliton solution, 1-kink-shaped soliton solution, 2-anti-bell-shaped soliton solution and periodic solutions of the equation were given by choosing the appropriate parameters, and the images of these solutions were given. We analyzed their structures, elastic and inelastic collisions of these solutions through these images.

Key words: discrete integrable system, Darboux transformation method, soliton solution

中图分类号: 

  • O175.29