吉林大学学报(理学版) ›› 2020, Vol. 58 ›› Issue (6): 1415-1420.

• • 上一篇    下一篇

基于动量因子优化学习率的BP神经网络PID参数整定算法

胡黄水1, 赵思远1, 刘清雪2, 王出航3, 王婷婷1   

  1. 1. 长春工业大学 计算机科学与工程学院, 长春 130012; 2. 吉林建筑科技学院 计算机科学与工程学院, 长春 130114;
    3. 长春师范大学 计算机科学与技术学院, 长春 130032
  • 出版日期:2020-11-18 发布日期:2020-11-26

BP Neural Network PID Parameter Tuning Algorithm Based on Momentum Factor Optimized Learning Rate

HU Huangshui1, ZHAO Siyuan1, LIU Qingxue2, WANG Chuhang3, WANG Tingting1   

  1. 1. College of Computer Science and Engineering, Changchun University of Technology, Changchun 130012, China;
    2. College of Computer Science and Engineering, Jilin University of Architecture and Technology, Changchun 130114, China;
    3. College of Computer Science and Technology, Changchun Normal University, Changchun 130032, China
  • Online:2020-11-18 Published:2020-11-26
  • Contact: 刘清雪 601630419@qq.com

摘要: 针对传统BP神经网络学习过程中学习率选取过大导致振荡的问题, 提出一种新的BP神经网络PID(比例-积分-微分)参数自适应整定算法. 采用BP神经网络对PID参数进行自适应调节和优化, 并利用动量因子优化学习率和增加动量项抑制BP神经网络训练中出现的振荡现象, 以加快收敛速度. 实验结果表明, 该算法有效缓解了振荡现象, 加快了算法的收敛速度.

关键词: PID参数自整定, 神经网络, 学习率, 动量因子

Abstract: Aiming at the problem of oscillation caused by excessive selection of learning rate in the learning process of traditional BP neural network, we proposed a new adaptive tuning algorithm for PID (proportional-integral-differential) parameters of BP neural network. BP neural network was used to adjust and optimize PID parameters adaptively, and momentum factor was used to optimize learning rate and increase momentum term to restrain oscillation phenomenon in BP neural network training, so as to accelerate convergence speed. The experimental results show that the proposed algorithm can effectively alleviate the oscillation phenomenon and accelerate the convergence speed of the algorithm.

Key words: PID parameter self-tuning, neural network, learning rate, momentum factor

中图分类号: 

  • TP311