吉林大学学报(理学版)

• 数学 • 上一篇    下一篇

n维分数次Hausdorff高阶交换子的有界性

任转喜, 陶双平   

  1. 西北师范大学 数学与统计学院, 兰州 730070
  • 收稿日期:2012-11-23 出版日期:2013-09-26 发布日期:2013-09-17
  • 通讯作者: 陶双平 E-mail:taosp@nwnu.edu.cn

Boundedness of Higher Order Commutators ofn-Dimensional Fractional Hausdorff Operators

REN Zhuanxi, TAO Shuangping   

  1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, China
  • Received:2012-11-23 Online:2013-09-26 Published:2013-09-17
  • Contact: TAO Shuangping E-mail:taosp@nwnu.edu.cn

摘要:

通过定义n维分数次Hausdorff算子HlΦ, 利用CMO函数和Lipschitz函数的John-Nirenberg型不等式, 分别得到了由HlΦ和C〖AKM·〗O及Lipschitz函数生成的高阶交换子Hl,mΦ,b在\{Leb-esgue\}[KG*8]空间、 Herz空间和Morrey-Herz空间上的有界性结果.

关键词: n维分数次Hausdorff算子, Lipschitz函数, CMO函数, 交换子

Abstract:

The n-dimensional fractional Hausdorff operators HlΦ were defined. With the aid of  JohnNirenberg inequalities about the CMO and Lipschitz functions, the boundedness of higher order commutators generated by HlΦ and CMO  or Lipschitz functions Hl,mΦ,b was established on Lebesgue spaces, Herz spaces, and MorreyHerz spaces respectively.

Key words: n-dimensional fractional Hausdorff operator, Lipschitz functions, CMO functions, commutators

中图分类号: 

  •