吉林大学学报(理学版) ›› 2024, Vol. 62 ›› Issue (5): 1017-1021.

• •    下一篇

 延迟回声状态神经网络用于复杂系统分析和应用

徐一宸1, Eric Li2,3   

  1. 1. 中国人民大学 信息学院, 北京 100872;2. Teesside大学 计算、 机械和数字技术学院, 英国北约克郡 米德尔斯堡 TS1 4; 3. 吉林大学 数学学院, 长春 130012
  • 收稿日期:2023-07-12 出版日期:2024-09-26 发布日期:2024-09-26
  • 通讯作者: Eric Li E-mail:lieric2023@126.com

Delayed Echo State Neural Network for Analysis and Application of Complex Systems

XU Yichen1, Eric Li2,3   

  1. 1. School of Information, Renmin University of China, Beijing 100872, China; 2. School of Computing, Engineering & Digital Technologies, Teesside University, Middlesbrough TS1 4, North Yorkshire, United Kingdom; 3. College of Mathematics, Jilin University, Changchun 130012, China
  • Received:2023-07-12 Online:2024-09-26 Published:2024-09-26

摘要: 提出一种改进的回声状态神经网络模型, 用于复杂系统的长期行为分析和预测. 模型通过引入隐层状态的延迟反馈体现系统过去时刻的信息对当前状态的影响, 避免了传统回声状态网络方法记忆能力弱的缺点以及获得最优参数的困难.

关键词: 回声状态网络, 混沌时间序列, 储备池计算, 稳定性, 长期预测

Abstract: We proposed an improved echo state neural network model for the analysis and prediction of long-term behavior of complex systems. The model introduced the delayed feedback of hidden layer state to reflect the influence of the past time information on the current state of the system,  avoiding the shortcomings of weak memory ability and difficulty of obtaining optimal parameters in traditional echo state network methods.

Key words: echo state network, chaotic time series, reservoir computing, stability, long-term prediction

中图分类号: 

  • O193