吉林大学学报(理学版) ›› 2024, Vol. 62 ›› Issue (5): 1188-1202.

• • 上一篇    下一篇

具有潜在表示和动态图约束的多标签特征选择

李坤1, 刘婧2, 齐赫1   

  1. 1. 海口经济学院 中芯依智网络学院, 海口 570203; 2. 之江实验室, 杭州 311000
  • 收稿日期:2023-08-04 出版日期:2024-09-26 发布日期:2024-09-26
  • 通讯作者: 李坤 E-mail:likun198309@163.com

Multi-label Feature Selection with Latent Representation and Dynamic Graph Constraints

LI Kun1, LIU Jing2, QI He1   

  1. 1. ZX-YZ School of Network Science, Haikou University of Economics, Haikou 570203, China; 2. Zhijiang Laboratory, Hangzhou 311000, China
  • Received:2023-08-04 Online:2024-09-26 Published:2024-09-26

摘要: 针对现有嵌入式方法忽略实例相关性的潜在表示对伪标记学习的影响以及固定的图矩阵导致计算误差随迭代的加深而不断增大的问题, 提出一种具有潜在表示和动态图约束的多标签特征选择方法. 该方法首先利用实例相关性的潜在表示构造伪标签矩阵, 并将其与线性映射和最小化伪标签与真实标签之间的Friedman范数距离相结合, 从而保证伪标签与真实标签之间具有较高的相似性. 其次, 利用伪标签的低维流形结构构建动态图, 以缓解固定图矩阵导致的随迭代深度增加计算误差的问题. 在12个数据集上与7种先进方法的对比实验结果表明, 该方法的整体分类性能优于现有先进方法, 能较好地处理多标记特征选择问题.

关键词: 多标签学习, 特征选择, 潜在表示, 动态图, 流形学习

Abstract: Aiming at the  problems that ignored by the existing embedded methods: the influence of the latent representation of instance
 correlation on pseudo-label learning, and the calculation error was caused by the fixed graph matrix, which increased with the deepening of iterations. We proposed a multi-label feature selection method with latent representation and dynamic graph constraints. Firstly, the proposed method used the latent representation of instance correlation to construct the pseudo-label matrix, and combined it with linear mapping and minimizing the Friedman norm distance between the pseudo-label and the ground-truth label to  ensure a high similarity between pseudo-labels and the ground-truth labels. Secondly, the dynamic graph was constructed by using the low-dimensional manifold structure of pseudo-labels to alleviate the problem of increasing calculation error with iteration depth caused by a fixed graph matrix.  The comparative experimental results with seven advance methods on 12 datasets show that the overall classification performance of the proposed method is superior to  the existing advanced methods, and it  can better deal with multi-label feature selection problems.

Key words: multi-label learning, feature selection, latent representation, dynamic graph, manifold learning

中图分类号: 

  • TP181