吉林大学学报(理学版) ›› 2025, Vol. 63 ›› Issue (1): 41-0046.

• • 上一篇    下一篇

由分数Brown运动驱动的EGARCH模型

王玮莹, 韩月才   

  1. 吉林大学 数学学院, 长春 130012
  • 收稿日期:2024-11-06 出版日期:2025-01-26 发布日期:2025-01-26
  • 通讯作者: 韩月才 E-mail:hanyc@jlu.edu.cn

EGARCH Model Driven by Fractional Brownian Motion

WANG Weiying, HAN Yuecai   

  1. College of Mathematics, Jilin University, Changchun 130012, China
  • Received:2024-11-06 Online:2025-01-26 Published:2025-01-26

摘要: 针对传统EGARCH模型难以捕捉长记忆性的问题, 通过引入分数Brown运动提出一个fBm-EGARCH模型, 给出模型的二阶矩、 四阶矩及协方差函数性质, 并理论证明其长期记忆性. 数值模拟结果表明, 该模型不仅能准确捕捉短期波动, 还能反映长期记忆性, 从而验证了模型的有效性.

关键词: EGARCH模型, 分数Brown运动, 长期记忆性, 流动性

Abstract: Aiming at  the problem that the traditional EGARCH model was difficult to capture long-term memory, we proposed an  fBm-EGARCH model by introducing fractional Brownian motion. We gave the second-order moment, the fourth-order moment and covariance function properties of the model, and   theoretically  proved its long-term memory. Numerical simulation results show that the model can not only accurately capture short-term fluctuations, but also reflect long-term memory, which verifies the effectiveness of the model.

Key words: EGARCH model, fractional Brownian motion,  , long-term memory, liquidity

中图分类号: 

  • O211.61