吉林大学学报(理学版) ›› 2025, Vol. 63 ›› Issue (1): 67-0075.

• • 上一篇    下一篇

利用地理空间和时间信息GNN-Transformer在MJO预测中的应用

魏晓辉1, 徐哲文1, 王兴旺1, 郝介云1, 刘长征2   

  1. 1. 吉林大学 计算机科学与技术学院, 长春 130012; 2. 国家气候中心 气候研究开放实验室, 北京 100081
  • 收稿日期:2023-09-25 出版日期:2025-01-26 发布日期:2025-01-26
  • 通讯作者: 王兴旺 E-mail:xww@jlu.edu.cn

Harnessing Geospatial and Temporal Information: GNN-Transformer Application to MJO Prediction

WEI Xiaohui1, XU Zhewen1, WANG Xingwang1, HAO Jieyun1, LIU Changzheng2   

  1. 1. College of Computer Science and Technology, Jilin University, Changchun 130012, China;
    2. Laboratory for Climate Studies, China Meteorological Administration, Beijing 100081, China
  • Received:2023-09-25 Online:2025-01-26 Published:2025-01-26

摘要: 针对目前深度学习在极端天气现象Madden-Julian振荡(MJO)预测任务中表现欠佳的问题, 提出一种基于动态图神经网络与Transformer结合的时序预测模型. 首先, 将地球海陆二维网格映射到图结构的节点上, 并提出利用多重注意力混合海陆掩码的方法进行节点筛选; 其次, 使用基于热传导与节点相似度度量进行边权重的迭代更新, 以获取每个时间步中最准确的气候模式信息; 再次, 使用最大极值法抽取不同时间段的异常节点信息作为极端气候的发生点, 并对这类点的变权重进行强化; 最后, 将上述结果输入到图神经网络进行编码, 并使用Transformer进行解码操作获取预测结果. 实验结果表明, 该模型在预测中最高可获得39 d的双变量相关系数(COR)有效预测值, 以及31 d的均方根误差(RMSE)有效预测值, 性能优于现有模型.

关键词: 时空预测, 图神经网络, 天气预测, 时间序列预测

Abstract: Aiming at  the problem of poor performance exhibited by current deep learning  in extreme weather phenomenon Madden-Julian oscillation (MJO) prediction tasks,  we proposed a time series prediction model based on a combination of dynamic graph neural network and Transformer. Firstly, we mapped the two-dimensional grid of Earth’s land and sea to the nodes of graph structure, 
and proposed  a method of using  multi-attention hybrid sea and land masks for node screening. Secondly, we iteratively updated edge weights based on heat conduction and node similarity measurement to obtain the most accurate climate model information at each time step. Thirdly, we used the maximum extreme value method to extract abnormal node information during different time periods as occurrence points of extreme climate, and strengthened variable weights of these points. Finally, we input above results into a graph neural network for encoding and utilized Transformer for decoding operations  to obtain prediction results. 
Experimental results show that the model can achieve an effective bivariate correlation coefficient (COR) prediction value of up to 39 d as well as an effective root mean square error (RMSE) prediction value of 31 d in prediction, and its performance is superior to existing models.

Key words: spatio-temporal forecasting, graph neural network,  , weather forcasting, time series prediction

中图分类号: 

  • TP399