吉林大学学报(理学版) ›› 2025, Vol. 63 ›› Issue (6): 1637-1645.

• • 上一篇    下一篇

基于逆向知识蒸馏人脸重建的深度伪造检测算法

刘文瑀1,2, 陈海鹏1, 孙宝胜3   

  1. 1. 吉林大学 计算机科学与技术学院, 长春 130012;2. 辽宁省烟草公司抚顺市公司, 辽宁 抚顺 113008; 3. 吉林省肿瘤医院 放疗科, 长春 130012
  • 收稿日期:2024-02-26 出版日期:2025-11-26 发布日期:2025-11-26
  • 通讯作者: 孙宝胜 E-mail:1575164354@qq.com

Deepfake Detection Algorithm Based on Reverse Knowledge Distillation for Face Reconstruction

LIU Wenyu1,2, CHEN Haipeng1, SUN Baosheng3   

  1. 1. College of Computer Science and Technology, Jilin University, Changchun 130012, China; 2. Liaoning Provincial Tobacco Company Fushun City Company, Fushun 113008, Liaoning Province, China; 3. Department of Radiotherapy, Jilin  Cancer Hospital, Changchun 130012, China
  • Received:2024-02-26 Online:2025-11-26 Published:2025-11-26

摘要: 针对深度伪造检测算法在数据集FaceForensics++(FF++)上神经纹理(neural textures, NT)伪造方法检测效果较低的问题, 通过对人脸图像的细粒度特征提取进行改进, 提出一个逆向知识蒸馏网络(reverse knowledge distillation net, RKD-Net). 首先, RKD-Net以逆向知识蒸馏为主体框架, 保留了输入人脸图像丰富的细粒度信息; 其次, 在编码器和解码器中间插入了空间和通道重建卷积, 从空间和通道两个维度上加强细粒度信息的表示; 最后, 使用残差坐标注意力分类器, 增强逆向知识蒸馏网络输出的真实特征和细节特征, 并根据这些不同特征对输入到网络的人脸图像进行分类. 实验结果表明, RKD-Net在保证对其他伪造方法检测效果的情况下, 对NT伪造方法检测效果达到最佳.

关键词: 深度伪造检测, 逆向知识蒸馏, 空间和通道重建卷积, 坐标注意力

Abstract: Aiming at the problem that  deepfake  detection algorithms  had low detection effect on neural texture (NT) forgery methods in FaceForensics++(FF++) dataset,  we  proposed a reverse knowledge distillation network (RKD-Net) by improving  fine-grained feature extraction of face images. Firstly, the RKD-Net used  reverse knowledge distillation (RKD) as the main framework, 
preserving  the rich fine-grained information of the input face images. Secondly, spatial and channel reconstruction convolution (SCConv) was inserted between the encoder and the decoder to enhance the representation of fine-grained information from both spatial and channel dimensions. Finally, a residual coordinate attention (RCA) classifier was used to enhance the real and detailed features  output by  the reverse knowledge distillation network, and classify the face images input to the network according to these different features. The experimental results  show that RKD-Net achieves  the best detection effect of NT forgery methods  
while guaranteeing the  detection effect of  other  forgery methods.

Key words: deepfake detection, reverse knowledge distillation, spatial and channel reconstruction convolution, coordinate attention

中图分类号: 

  • TP391.41