吉林大学学报(理学版) ›› 2025, Vol. 63 ›› Issue (6): 1731-1736.

• • 上一篇    下一篇

基于多模态深度神经网络的Web网页攻击重定向混淆检测

闫培玲, 刘俊娟, 高志宇   

  1. 河南中医药大学 信息技术学院, 郑州 450046
  • 收稿日期:2024-07-30 出版日期:2025-11-26 发布日期:2025-11-26
  • 通讯作者: 高志宇 E-mail:gzy_sxj@163.com

Web Page Attack Redirection Confusion Detection Based on Multimodal Deep Neural Network

YAN Peiling, LIU Junjuan, GAO Zhiyu   

  1. School of Information Technology, Henan University of Chinese Medicine, Zhengzhou 450046, China
  • Received:2024-07-30 Online:2025-11-26 Published:2025-11-26

摘要: 针对恶意Web网页链接和插件通过不断混淆和变形附着在其他文件内, 使传统检测方法难以实现精准检测的问题, 提出一种基于多模态深度神经网络的Web网页攻击重定向混淆检测方法. 首先, 提取attribute类、 keyword类、 var类和word类Web网页攻击的特征, 并将其转换为8维敏感特征向量, 计算其对应实数值. 其次, 将Web网页和实数值一起输入到多模态深度神经网络中进行训练. 最后, 通过Web页面分类器输出得到精准的攻击重定向混淆检测结果. 实验结果表明, 该方法的检测率约为98%, 可在保证较高检测率的前提下实现对Web网页攻击重定向混淆的有效检测.

关键词: 多模态深度神经网络, Web网页攻击重定向混淆检测, TF-IDF算法, 非线性激励单元, 损失函数

Abstract: Aiming at the problem that malicious Web page links and plugins could be attached to other files through constant confusion and deformation, traditional detection methods were difficult to achieve accurate detection, we proposed a Web page attack redirection confusion detection method based on multimodal deep neural networks. Firstly, we extracted the features of  Web page attacks: attribute class, keyword class, var class, and word class, and converted them into 8-dimensional sensitive feature vectors to 
calculate their corresponding real values. Secondly, the Web page and real values were input together into a multimodal deep neural network for training. Finally, accurate attack redirection confusion detection results were obtained through the output of the Web page classifier. The experimental results show that the detection rate of the proposed method is about 98%, which can effectively detect redirection confusion in Web page attacks while ensuring a high detection rate.

Key words: multimodal deep neural network, Web page attack redirection confusion detection, TF-IDF algorithm, nonlinear excitation unit, loss function

中图分类号: 

  • TP364