吉林大学学报(理学版) ›› 2026, Vol. 64 ›› Issue (1): 43-0048.

• • 上一篇    下一篇

具变号权函数的p-Laplace方程正径向解的全局分歧结构

何志乾1, 张燕朋2   

  1. 1. 青海大学 数理学院, 西宁 810016; 2. 白银矿冶职业技术学院 公共教学部, 甘肃 白银 730900
  • 收稿日期:2025-03-21 出版日期:2026-01-26 发布日期:2026-01-26
  • 通讯作者: 何志乾 E-mail:zhiqianhe1987@163.com

Global Bifurcation Structure of Positive Radial Solutions for p-Laplacian Equations with Sign-Changing Weight Function

HE Zhiqian1, ZHANG Yanpeng2   

  1. 1. School of Mathematics and Physics, Qinghai University, Xining 810016, China; 2. Department of Public Education, Baiyin Vocational College of Mining and Metallurgy, Baiyin 730900, Gansu Province, China
  • Received:2025-03-21 Online:2026-01-26 Published:2026-01-26

摘要: 基于分歧理论研究一类带Dirichlet边界条件的拟线性椭圆边值问题正径向解的全局结构. 特别地, 通过引入临界指数f0,f, 在f0∈(0,∞)且f=0和f0=∞且f=0两种典型情形下, 证明了存在从分歧点发出的无界连通分支, 且该分支最终沿λ轴方向渐近延伸至无穷远处.

关键词: p-Laplace方程, 正径向解, 变号权, 分歧

Abstract: We investigated the global structure of positive radial solutions for a class of quasilinear elliptic boundary value problems with Dirichlet boundary conditions based on  bifurcation theory. Specifically, by introducing two critical exponents f0 and f,  under two typical cases of  f0∈(0,∞), f=0 and f0=∞, f=0, we prove the existence of unbounded connected branches emanating from bifurcation points, which utimately asymptotically extend to infinity along the λ-axis.

Key words: p-Laplacian equation, positive radial solution, sign-changing weight, bifurcation

中图分类号: 

  • O175.8