吉林大学学报(理学版) ›› 2026, Vol. 64 ›› Issue (1): 69-0076.

• • 上一篇    下一篇

树图的补距离谱半径

张艳慧, 马小玲   

  1. 新疆大学 数学与系统科学学院, 乌鲁木齐 830017
  • 收稿日期:2025-04-14 出版日期:2026-01-26 发布日期:2026-01-26
  • 通讯作者: 马小玲 E-mail:mxling2018@163.com

Spectral Radius of  Complementary Distance  of Tree Graphs

ZHANG Yanhui, MA Xiaoling   

  1. College of Mathematics and System Science, Xinjiang University, Urumqi 830017, China
  • Received:2025-04-14 Online:2026-01-26 Published:2026-01-26

摘要: 利用移边操作和Perron-Frobenius定理讨论树图的补距离谱半径问题, 分别确定最大和最小的补距离谱半径的唯一树, 并确定在树的补图中补距离谱半径最小的图, 以及补距离谱半径第i大的图, 其中i=1,2,…,(n-2)/2.

关键词: 补距离谱半径, 补距离矩阵, 距离矩阵, 极值图

Abstract: By using edge-moving operations and the Perron-Frobenius theorem, we discussed the problem of the spectral radius of the complement distance  of tree graph.  We determined the unique trees with maximum  and minimum spectral radii of  the complementary distance, respectively, and  determined the graph with the minimum spectral radius of  the  complementary distance in the complementary graph of the tree,  as well as the graph with  the i-th largest spectral radius of complementary distance, where  i=1,2,…,(n-2)/2.

Key words: spectral radius of complementary distance, complementary distance matrix, distance matrix, extremal graph

中图分类号: 

  • O157.5