吉林大学学报(理学版) ›› 2026, Vol. 64 ›› Issue (1): 104-0112.

• • 上一篇    下一篇

基于局部相关性和多尺度空间注意力的人脸表情识别

胡黄水1, 曹禹1, 刘名扬2, 康琪儿3   

  1. 1. 长春工业大学 计算机科学与工程学院, 长春 130012; 2. 吉林大学 仪器科学与电气工程学院, 长春 130061;
    3. 长春工业大学 电气与电子工程学院, 长春 130012
  • 收稿日期:2024-08-14 出版日期:2026-01-26 发布日期:2026-01-26
  • 通讯作者: 曹禹 E-mail:18961081783@163.com

Facial Expression Recognition Based on Local Correlation and Multi-scale Spatial Attention

HU Huangshui1, CAO Yu1, LIU Mingyang2, KANG Qi’er3   

  1. 1. College of Computer Science & Engineering, Changchun University of Technology, Changchun 130012, China;
    2. College of Instrumentation and Electrical Engineering, Jilin University, Changchun 130061, China;
    3. College of Electrical and Electronic Engineering, Changchun University of Technology, Changchun 130012, China
  • Received:2024-08-14 Online:2026-01-26 Published:2026-01-26

摘要: 针对遮挡、 姿势变化和光照等因素对人脸表情识别的影响, 提出一种基于局部相关性和多尺度空间注意力的人脸表情识别方法. 首先, 通过局部相关性模块, 将局部特征与全局特征相结合, 并增强局部特征之间的联系, 从而提高模型在复杂环境下的识别性能. 其次, 采用多尺度空间注意力机制, 提取并融合不同层次的空间结构信息, 提升模型的鲁棒性. 实验结果表明, 该方法在数据集RAF-DB和AffectNet上展现了优越的人脸表情识别效果, 从而验证了该方法的有效性和泛化能力.

关键词: 人脸表情识别, 空间注意力, 多尺度网络, 局部相关性

Abstract: Aiming at  the impact of factors such as  occlusion, pose variations and lighting on facial expression recognition, we proposed a facial expression recognition method based on local correlation and multi-scale spatial attention. Firstly, through the local correlation module, local features were combined with global features to enhance the connections between local features, thereby improving recognition performance of the model in complex environments. Secondly,  the multi-scale spatial attention mechanism was adopted to extract and fuse spatial structural information at different levels, enhancing the robustness of the model.  Experimental results show that the proposed method demonstrates superior facial expression recognition performance on the RAF-DB and AffectNet datasets, validating its effectiveness and generalization ability.

Key words: facial expression recognition, spatial attention, multi-scale network, local correlation

中图分类号: 

  • TP391