吉林大学学报(理学版) ›› 2026, Vol. 64 ›› Issue (1): 134-0142.

• • 上一篇    下一篇

一类具阻尼的可压缩非Newton流体方程的整体解

蔡欣池1,2, 李华鹏1   

  1. 1. 东北电力大学 理学院, 吉林 吉林 132012; 2. 吉林化工大学 理学院, 吉林 吉林 132012
  • 收稿日期:2024-10-08 出版日期:2026-01-26 发布日期:2026-01-26
  • 通讯作者: 李华鹏 E-mail:huapeng.li@163.com

A Class of Global Solutions to Compressible Non-Newtonian Fluid Equations with Damping

CAI Xinchi1,2, LI Huapeng1   

  1. 1. School of Science, Northeast Electric Power University, Jilin 132012, Jilin Province, China;
    2. School of Science, Jilin University of Chemical Technology, Jilin 132012, Jilin Province, China
  • Received:2024-10-08 Online:2026-01-26 Published:2026-01-26

摘要: 研究一类具有初始真空和线性阻尼的非Newton流体初边值问题. 在初始能量小, 且初值满足一定相容性的条件下, 利用加权能量估计技巧和Zlotnik不等式克服动量方程黏性项的非线性性, 证明密度函数具有时间的一致上界. 进而采用连续性方法得到该非Newton流体初边值问题整体强解的存在唯一性结论.

关键词: 整体强解, 非Newton流体, 初始真空, 加权估计

Abstract: We studied the initial-boundary value problem of a class of non-Newtonian fluids with initial vacuum and linear damping. Under the condition that the initial energy was small and the initial value met certain compatibility, we used the technique of weighted energy estimation and Zlotnik inequality to overcome the nonlinearity of the viscous term of the momentum equation, and proved that the density function had a uniform upper bound of time. Furthermore, we adopted the continuity method to obtain the existence and uniqueness conclusion of the global strong solution of the initial-boundary value problem of non-Newtonian fluid.

Key words: global strong solution, non-Newtonian fluid, initial vacuum, weighted estimation

中图分类号: 

  • O411