吉林大学学报(理学版) ›› 2026, Vol. 64 ›› Issue (1): 185-0192.

• • 上一篇    

Ni@C3N4单原子催化剂的制备及其水体抗生素污染降解性能

邓楚楚, 安文刚, 杨悦锁   

  1. 吉林大学 新能源与环境学院, 长春 130012
  • 收稿日期:2025-02-17 出版日期:2026-01-26 发布日期:2026-01-26
  • 通讯作者: 杨悦锁 E-mail:yangyuesuo@jlu.edu.cn

Preparation of Ni@C3N4 Single-Atom Catalyst and Its Performance in Degrading Antibiotic Pollution in Water

DENG Chuchu, AN Wengang, YANG Yuesuo   

  1. College of New Energy and Enviroment, Jilin University, Changchun 130012, China
  • Received:2025-02-17 Online:2026-01-26 Published:2026-01-26

摘要: 针对水体中抗生素如磺胺甲恶唑(SMX)存在广泛、 对生态系统和人类健康构成威胁且 传统污水处理工艺难以有效去除的问题, 制备一种负载单原子Ni的少层C3N4催化剂(Ni@C3N4), 通过氧还原反应生成H2O2, 可高效电催化降解磺胺甲恶唑.  结构表征表明, Ni以单原子形式高度分散在少层C3N4基体中, 并显著调控少层C3N4的电子结构, 优化活性位点分布.  电化学测试结果表明, Ni@C3N4具有良好的二电子选择性和快速反应动力学性能,  在酸性条件(pH=3)下, Ni@C3N4可通过两电子路径生成H2O2, 在120 min内对磺胺甲恶唑的降解率可达81.3%, 显著优于未掺杂的C3N4催化剂.  动力学分析结果表明, 降解过程符合准一级反应模型. 该研究结果为水体中抗生素的治理提供了新思路. 

关键词: 磺胺甲恶唑, 少层相氮化碳, 单原子催化剂, 氧还原反应, 过氧化氢

Abstract: Aiming at the problem of the widespread presence of antibiotics such as sulfamethoxazole (SMX) in water bodies, which posed a threat to the ecosystem and human health, and were difficult to effectively remove by using conventional wastewater treatment processes,  we prepared a few-layer carbon nitride catalyst (Ni@C3N4) loaded with single-atom nickel,  which could efficiently electrocatalytically degrade sulfamethoxazole by generating hydrogen peroxide (H2O2) via an oxygen reduction reaction (ORR). Structural characterization show that nickel is highly dispersed in the few-layer carbon nitride matrix in the form of single-atoms and significantly modulates the electronic structure of the few-layer carbon nitride to optimize the active site distribution. Electrochemical test results show that Ni@C3N4 has excellent two-electron selectivity and rapid reaction kinetics. Under acidic conditions (pH=3), Ni@C3N4 can generate H2O2 via the two-electron pathway,  and degradation rate of sulfamethoxazole can reach 81.3% within 120 min, which is significantly better than that of the undoped carbon nitride catalyst. Kinetic analysis results show that the degradation process conforms to a pseudo-first-order reaction model. The research results provide new ideas for the treatment of antibiotics in water bodies.

Key words: sulfamethoxazole, few-layer carbon nitride, single-atom catalyst, oxygen reduction reaction, hydrogen peroxide

中图分类号: 

  • X522