吉林大学学报(理学版)

• 计算机科学 • 上一篇    下一篇

基于具有自适应与自学习能力的粒子群优化算法的车间调度算法

叶寒锋, 李占山, 陈超   

  1. 吉林大学 符号计算与知识工程教育部重点实验室, 计算机科学与技术学院, 长春 130012
  • 收稿日期:2013-03-11 出版日期:2014-01-26 发布日期:2014-03-05
  • 通讯作者: 李占山 E-mail:zslizsli@163.com

Adaptive and Selflearning PSOBased Algorithmfor Job Shop Scheduling Problem

YE Hanfeng, LI Zhanshan, CHEN Chao   

  1. Key Laboratory of Symbolic Computation and Knowledge Engineering for Ministry of Education,College of Computer Science and Technology, Jilin Univ
    ersity, Changchun 130012, China
  • Received:2013-03-11 Online:2014-01-26 Published:2014-03-05
  • Contact: LI Zhanshan E-mail:zslizsli@163.com

摘要:

针对车间调度问题, 提出一种新的基于粒子群优化和模拟退火的混合算法. 该算法将问题规模作为启发式信息, 通过对模拟退火算法引入新的邻域搜索机制--多粒度搜索, 并加入选择优化和淘汰更新机制, 提高了算法的自适应性和自学习能力, 降低了粒子群算法陷入局部最优的可能性. 实验结果表明, 该算法在最优解的求解能力上优于其他算法.

关键词: 车间调度, 粒子群优化, 自适应, 自学习

Abstract:

For job shop scheduling problem, we proposed a new particle swarm optimization and simulated annealing based algorithm, in which we made use of the information of the problem itself, added a new neighborhood search strategy (multigranularity) in simulated annealing search, and introduced selection optimization and updating parts into the original particle swarm optimization algorithm. All the adjustments make our algorithm more adaptive, improve the ability of selflearning, and reduce the possibility of trapping in the local best. Our algorithm was tested on different scale benchmarks and compared with recently proposed algorithms. The experimental results show that our algorithm is more adaptive and efficient than the other three algorithms.

Key words: job shop scheduling, particle swarm optimization, adaptive, selflearning

中图分类号: 

  • TP31