J4

• 数学 •    下一篇

极值原理的推广及其在研究粘性解中的应用

魏英杰, 高文杰   

  1. 吉林大学数学研究所, 长春 130012
  • 收稿日期:2004-01-31 修回日期:1900-01-01 出版日期:2004-07-26 发布日期:2004-07-26
  • 通讯作者: 高文杰

Generalization of Aleksandrov-Bakel'man-Pucci-Krylov-Tsomaximum principle and its application to viscosity solutions

WEI Ying-jie, GAO Wen-jie   

  1. Institute of Mathematics, Jilin University, Changchun 130012, China
  • Received:2004-01-31 Revised:1900-01-01 Online:2004-07-26 Published:2004-07-26
  • Contact: GAO Wen-jie

摘要: 〖HT5F〗通过引进Sα类函数, 证明抛物型方程的粘性解在一定条件下属于Sα类函数, 从而将对粘性解性质的讨论转变成对S α类函数的讨论.把Aleksandrov-Bakel'man-Pucci-Krylov-Tso极值原理推广到更一般的情形, 并证明Sα类函数满足推广后的Aleksandrov-Bakel'man-Pucci-Krylov-Tso极值原理 , 应用该极值原理获得了一类完全非线性抛物型方程粘性解的正则性结果.

关键词: 〖HT5F〗极值原理, 粘性解, 正则性

Abstract: On the basis of constructing the functions of class Sα it is proved that the viscosity solutions of parabolic equations belong to the functions of class Sα under certain conditions. Thus the discu ssion of studying viscosity solutions is converted to that of studying the functions of class Sα. The Aleksandrov-Bakel'man-Pucci-Krylov-Tso maximum principle is generalized to a more general one and it is proved that the functions of class Sα obey the generalized Aleksandrov-Bakel'man-Pucci-Krylov-T so maximum principle, by means of which some regularity results to the viscosity solutions of fully nonlinear parabolic equations are obtained.

Key words: maximum principle, viscosity solutions, regularity

中图分类号: 

  • O175