吉林大学学报(信息科学版) ›› 2016, Vol. 34 ›› Issue (3): 359-366.

• 论文 • 上一篇    下一篇

基于FPGA 的车辆横摆稳定预测控制器设计实现

梅摇钦a,b, 许芳b, 陈虹a,b, 李宗俐b   

  1. 吉林大学a. 汽车仿真与控制国家重点实验室; b. 通信工程学院, 长春130022
  • 收稿日期:2015-08-25 出版日期:2016-05-25 发布日期:2016-12-21
  • 作者简介:梅钦(1992—), 男, 湖北黄冈人, 吉林大学硕士研究生, 主要从事FPGA 技术及汽车电子控制研究, (Tel)86-18744027022(E-mail)hgzxmeiqin123@126. com; 通讯作者: 陈虹(1963—), 女, 浙江桐乡人, 吉林大学教授, 博士生导师, 主要从事先进控制理论及汽车电子控制研究,(Tel)86-13578797009(E-mail)chenh@ jlu. edu. cn。
  • 基金资助:

    “973冶课题基金资助项目(2012CB821202); 国家自然科学基金资助项目(61374046; 61403159)

MPC Controller Design and FPGA Implementation for Vehicle Yaw Stability Control

MEI Qina,b, XU Fangb, CHEN Honga,b, LI Zonglib   

  1. a. State Key Laboratory of Automotive Simulation and Control;b. College of Communication Engineering, Jilin University, Changchun 130022, China
  • Received:2015-08-25 Online:2016-05-25 Published:2016-12-21

摘要:

为提高车辆横摆稳定预测控制器的实时性, 采用现场可编程门阵列(FPGA: Field Programmable Gate Array)设计实现了该预测控制器, 并采用基于罚函数的粒子群算法预测控制二次规划问题的求解。同时通过FPGA 进行并行运算, 以减少运算时间。为了验证控制器的有效性, 以车辆动力学软件veDYNA 中的车辆模型为被控对象, 以FPGA 为控制器的硬件实现平台进行了实时实验。实验结果表明, 基于FPGA 实现的预测控制器能很好地满足车辆横摆稳定控制的实时性要求, 为控制器的实车实验奠定了实践基础。

关键词: 模型预测控制, 车辆横摆稳定性, 粒子群算法, 现场可编程门阵列, 实时实验

Abstract:

In order to improve the real-time performance of predictive controller for vehicle yaw stability control,we implement a predictive controller based on FPGA(Field Programmable Gate Array), and adopt PSO(Particle Swarm Optimization) combined with penalty function to solve the QP(Quadratic Programming) problem. The FPGA is used to reduce operation time of the MPC (Model Predictive Control) controller by using parallel computations. In order to verify the effectiveness of the controller, real-time tests are carried out in the typical vehicle running condition. In the tests, vehicle dynamic model in veDYNA is used as the plant, and the FPGA is used as the hardware platform of controller. The simulation results indicate that the MPC controller can satisfy the requirements of the vehicle yaw stability control well, and lay the foundation for the controller to real vehicle test.

Key words: model predictive control, vehicle yaw stability, particle swarm optimization, field programmable, gate array, real-time tests

中图分类号: 

  • TP273