吉林大学学报(信息科学版) ›› 2016, Vol. 34 ›› Issue (4): 556-563.

• 论文 • 上一篇    下一篇

LOGIT 回归模型对公司违约的预测探讨

郭曼   

  1. 哈尔滨工业大学深圳研究生院社会发展与经济创新研究中心, 深圳518000
  • 收稿日期:2016-03-27 出版日期:2016-07-25 发布日期:2017-01-16
  • 作者简介:郭曼(1977—), 男, 长春人, 哈尔滨工业大学深圳研究生院助理教授, 博士, 主要从事计量经济学、制度经济学研究,(Tel)86-13530696863(E-mail)guoman@ hitsz. edu. cn。
  • 基金资助:
    深圳市教育局2015 教育规划重大课题基金资助项目(ZDFZ15022)

Predicting Company Default with Logistic Regression

GUO Man   

  1. Social Development and Economic Innovation Center, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518000, China
  • Received:2016-03-27 Online:2016-07-25 Published:2017-01-16

摘要: 为准确有效地预测企业违约的可能性, 以避免信用违约风险, 基于单一变量和多变量两种模型的分析,利用Logit 回归模型对企业的各变量和违约概率进行推断, 并以德国企业为例, 分析违约公司的共性和特性。对模型的交叉验证结果表明, 以Logit 模型衡量企业违约预测的统计方法整体精度达到70% 左右, 并能保持较高的可靠性和稳定性。违约预测可大大降低企业的违约风险, 在金融投资领域发挥重要作用。

关键词: 违约概率, 信用违约, Logit 回归

Abstract: In order to predict the probability of company default accurately and efficiently, we take the logit regression model with single variable model and multi-variable model to test each enterprise and inference the probability of default. By taking German company as an example, to analysis the common and specific characteristics of the default company. The results show that, measuring the statistics approach to predict company default by logit model has a high degree of accuracy of 70% , maintains high reliability and stability. Default prediction can greatly reduce the risk of default in the field of financial investment with an important role.

Key words: Logit regression, credit default, default probability

中图分类号: 

  • TP3