吉林大学学报(信息科学版) ›› 2016, Vol. 34 ›› Issue (6): 805-810.

• 论文 • 上一篇    

基于蝙蝠算法的 K 均值聚类算法

王晓东, 张 姣, 薛 红   

  1. 西安工程大学 理学院, 西安 710048
  • 收稿日期:2016-05-08 出版日期:2016-11-25 发布日期:2017-01-16
  • 作者简介:王晓东(1974— ), 女, 陕西咸阳人, 西安工程大学副教授, 硕士, 主要从事统计建模与仿真、 智能算法研究, (Tel)86-13669230387(E-mail)591765847@ qq. com。
  • 基金资助:
     陕西省自然科学基金资助项目(2016JM1031)

K-Means Clustering Algorithm Based on Bat Algorithm

WANG Xiaodong, ZHANG Jiao, XUE Hong   

  1. School of Science, Xi爷an Polytechnic University, Xi’an 710048, China
  • Received:2016-05-08 Online:2016-11-25 Published:2017-01-16

摘要: 为解决传统 K-means 算法中因初始聚类中心选择不当而导致聚类结果陷入局部极值的问题, 采用蝙蝠算法搜寻 K-means 算法的初始聚类中心, 并将模拟退火的思想和基于排挤的小生境技术引入到蝙蝠算法中, 以克服原始蝙蝠算法存在后期收敛速度慢、 搜索力不强等问题。 同时, 通过测试函数验证了其有效性。 最后利用改进后的蝙蝠算法优化 K-means 算法的初始聚类中心, 并将该改进的算法与传统的 K-means 算法的聚类结果进行了对比。 实验结果表明, 改进后的算法的聚类性能比传统的 K-means 算法有很大提高。

关键词: 蝙蝠算法, K-均值聚类, 初始聚类中心

Abstract: in order to solve the problem of clustering center improper selection in the traditional K-means algorithm which leads to the clustering result into local optimum, the initial clustering center of K-means algorithm is searched by the bat algorithm. The simulated annealing and the niche technology based on crowding out is added into the bat algorithm, in order to overcome some problems such as slow-speed convergence in later and weak search capability, its validity is verified by test functions. Finally the initial clustering center of K-means algorithm is optimized by the improved bat algorithm. The improved algorithm is compared to the traditional K-means algorithm, and the experimental results show that the improved algorithm of clustering performance has improved greater than the traditional K-means algorithm.

Key words: bat algorithm, initial clustering center, K-means clustering

中图分类号: 

  • TP301. 6