吉林大学学报(信息科学版)

• 论文 • 上一篇    

基于多字典 L1/2 正则化的超分辨率重建算法

徐志刚, 李文文   

  1. 兰州理工大学 计算机与通信学院, 兰州 730050
  • 收稿日期:2016-06-30 出版日期:2017-05-25 发布日期:2017-06-07
  • 作者简介: 徐志刚(1977— ), 男, 甘肃张掖人, 兰州理工大学副教授, 硕士生导师, 主要从事计算机图像与视频处理、 信号稀疏表 示模型与理论、 模式识别理论及应用研究, (Tel)86-13261756493(E-mail)1491347062@ qq. com。

Super-Resolution Reconstruction Based on L1/2 Regularization of Multi Component Dictionary

XU Zhigang, LI Wenwen   

  1. School of Computer and Communication, Lanzhou University of Technology, Lanzhou 730050, China
  • Received:2016-06-30 Online:2017-05-25 Published:2017-06-07

摘要: 为详细表达图像高频细节信息, 提高重建图像质量, 提出了一种基于多字典 L1 /2 正则化的超分辨
率重建算法。 该算法在稀疏重建字典对训练阶段, 为有效提取低分辨率图像边缘、 纹理等特征细节信息,
采用改进的一阶二阶导数方法对低分辨率图像进行特征提取; 而在图像重建阶段, 为解决基于 L1 正则模
型得到的解时常不够稀疏, 重建图像质量有待进一步提高的问题, 采用 L1 /2 范数代替 L1 范数构建超分
辨率重建模型。 实验表明, 与现有算法相比较, 该算法可更好地表达图像细节部分信息, 并能提高图像
的重建质量。

关键词: L1/2 正则化,  超分辨率重建, 特征提取

Abstract:  In order to express the high frequency minutia information of the image in detail, and improve the
quality of reconstructed image, a super resolution reconstruction algorithm is applied based on multi dictionary
L1/2 regularization. In the dictionary training phase, in order to effectively extract the information of feature
detail of edge and texture of low resolution image, the modified first or second order method is used to extract
feature for low resolution image. In the stage of image reconstruction, because of the problems that the solution
based on L1 regular model is usually not sparse enough and the quality of the reconstructed image needs to be
further improved, L1/2 norm is employed to substitute L1 norm to establish the super resolution reconstruction
model. The experiment shows that the present algorithm compared with the existing algorithms can better express
the section information of the image details and improve the quality of image reconstruction.

Key words:  super-resolution reconstruction, feature extraction, L1/2 regularization

中图分类号: 

  •