吉林大学学报(信息科学版)

• 论文 • 上一篇    下一篇

基于 SVM 新的情感计算方法

杨永健, 聂 瑜, 吴 洋, 孙广志, 杨仲尧   

  1. 吉林大学 软件学院, 长春 130012
  • 收稿日期:2017-03-15 出版日期:2017-09-29 发布日期:2017-10-23
  • 作者简介: 杨永健(1960— ), 男, 湖南衡阳人, 吉林大学教授, 博士生导师, 主要从事计算机应用研究, (Tel)86-13074316565(E-mail)yyj@ jlu. edu. cn。
  • 基金资助:
     吉林省科技发展计划重点基金资助项目(20160204021GX)

New Emotional Evaluate Method Based on SVM

YANG Yongjian, NIE Yu, WU Yang, SUN Guangzhi, YANG Zhongyao   

  1. College of Software, Jilin University, Changchun 130012, China
  • Received:2017-03-15 Online:2017-09-29 Published:2017-10-23

摘要:  传统的情感计算方法主要基于面部表情和肢体动作的变化, 为解决此类方法存在的主观性问题, 以人在
正性和负性情感下的 EEG(Electroencephalagrams)信号作为研究对象, 使用中国情感图片系统, 设计了测试者
观看情感刺激图片的实验, 使用支持向量机算法对数据进行分析, 并根据实验的实际情况提出了将连续的
12 条数据分为一组, 采用其均值进行计算的方法。 实验结果表明, 该方法的识别准确率达到 73. 33%。 这不仅
提供了一种减少情感产生时延导致误差的方法, 同时也为脑电波的分析和优化提供了参考。

关键词: 支持向量机, 数据分析, 情感计算, 脑电波信号

Abstract: Traditional emotional evaluate methods are mainly based on changes in facial expressions and body
movements. To solve the subjective problems existing in these methods, we use positive and negative emotional
EEG (Electroencephalagrams) signal as the research object, anddesign the picture watching experiments with
the help of the CAPS (Chinese Affective Picture System) of Chinese Academy of Sciences, and then analyze the
final data using machine learning algorithm of SVM (Support Vector Machine). Moreover, according to the
actual situation of the experiment, this paper presents a new method that dividing 12 consecutive data into one set
and using the mean of each set into emotional evaluating. The results show that this new method obtainsa better
recognition accuracy of 73. 33%. This research not only provides a method that reduces the error caused by
emotion generating delay, but also provides a reference for the analysis and optimization of brain waves.

Key words:  data mining, emotional evaluation, support vector machine (SVM), electroencephalagram(EEG)

中图分类号: 

  •