吉林大学学报(信息科学版)

• 论文 • 上一篇    下一篇

基于混合蛙跳粒子群算法的 TSP 问题求解

康朝海 1 , 李鹏娜 1 , 张永丰 2 , 陈建玲 3   

  1. 1. 东北石油大学 电气信息工程学院, 黑龙江 大庆 163318; 2. 大庆油田有限责任公司 第二采油厂规划设计研究所,
    黑龙江 大庆 163318; 3. 中海石油(中国)有限公司天津分公司 渤海研究院, 天津 300452
  • 收稿日期:2017-02-24 出版日期:2017-09-29 发布日期:2017-10-23
  • 作者简介: 康朝海(1976— ), 男, 黑龙江望奎人, 东北石油大学副教授, 博士研究生, 硕士生导师, 主要从事智能控制、 模式识别研究, (Tel)86-13796596331(E-mail)kangchaohai@126. com。
  • 基金资助:
     国家自然科学基金资助项目(61374127)

Solving Travelling Salesman Problem Based on Shuffled Frog Leaping Algorithm and Particle Swarm Optimization Algorithm

KANG Chaohai 1 , LI Pengna 1 , ZHANG Yongfeng 2 , CHEN Jianling 3   

  1. 1. School of Electrical Engineering and Information, Northeast Petroleum University, Daqing 163318, China;
    2. Institute of Planning Design of Second Oil Production Plant, Daqing Oilfield Company Limited, Daqing 163318, China;
    3. Bohai Oil Research Institute, Tianjin Branch of China National Offshore Oil Corporation Limited, Tianjin 300452, China
  • Received:2017-02-24 Online:2017-09-29 Published:2017-10-23

摘要:  为提高粒子群算法求解TSP(Travelling Salesman Problem)问题的性能, 在算法搜索初期, 将混合蛙跳算法和
粒子群算法相融合, 针对初始粒子群随意性大、 粒子分布不均的问题, 利用混合蛙跳算法的分组策略将种群分
组, 采用改进的蛙跳更新公式优化次优个体, 并抽取各层次个体得到新种群, 从而提高最优个体的获得速度;
在算法后期, 引入3 重交叉策略和基于疏密性的引导变异操作, 解决粒子多样性降低、 易陷入局部最优的问题。
利用改进算法求解 TSP 问题, 并与其他算法进行对比。 结果表明, 改进算法是有效的且性能优于其他算法。

关键词: 粒子群算法, TSP 问题, 混合蛙跳算法, 交叉变异

Abstract: In order to improve the performance of particle swarm optimization algorithm for solving travelling
salesman problem, the shuffled frog leaping algorithm is merged with particle swarm optimization algorithm in the
initial period. Because the initial particles are arbitrary and the distribution is uneven, the particle swarm is
carried out by using the grouping strategy of the shuffled frog leaping algorithm. The suboptimal individuals are
optimized by the improved frog leaping update formula, and new particle swarm is obtained by extracting
individuals at each level, so as to improve the speed of obtaining the optimal individual. In the later period of the
algorithm, the triple crossover strategy and guided mutation operation based on density are introduced to solve the
problem that the particle diversity reduces gradually and the algorithm is easy to fall into local optimum. The
results show that the improved algorithm is effective and superior to other algorithms.

Key words: crossover and mutation, shuffled frog leaping algorithm(SFLA), particle swarm optimization(PSO) algorithm, travelling salesman problem(TSP)

中图分类号: 

  •