吉林大学学报(信息科学版)

• 论文 • 上一篇    下一篇

基于瀑布型混合技术的异常检测算法

王茹雪, 张丽翠, 刘姝岐   

  1. 吉林大学 通信工程学院, 长春 130012
  • 收稿日期:2017-05-22 出版日期:2017-09-29 发布日期:2017-10-23
  • 作者简介: 王茹雪(1992— ), 女, 黑龙江富锦人, 吉林大学硕士研究生, 主要从事机器学习算法研究, (Tel)86-18204310789(E-mail)wangruxue1231@163. com; 张丽翠(1967— ), 女, 长春人, 吉林大学副教授, 硕士生导师, 主要从事无线传感网协议以及机器学习算法研究, (Tel)86-13620798629(E-mail)zlc67961@163. com。
  • 基金资助:
    吉林省发改委基金资助项目(2015Y042)

Anomaly Detection Algorithm Based on Waterfall Hybrid Technology

WANG Ruxue, ZHANG Licui, LIU Shuqi   

  1. College of Communication Engineering, Jilin University, Changchun 130012, China
  • Received:2017-05-22 Online:2017-09-29 Published:2017-10-23

摘要: 针对隔离森林(iForest: isolation Forest)算法对局部异常点检测能力较低, LOF(Local Outlier Factor)算法
检测时间较长的问题, 提出了基于瀑布型混合技术的隔离森林算法 iForest-WHT(isolation Forest based on
Waterfall Hybrid Technology)。 该算法借鉴瀑布型混合技术思想, 将隔离森林算法作为过滤器, 以分割路径为阈
值判断依据, 将路径小于阈值的数据放入候选异常子集, 继而使用考虑极值影响的改进的 LOF 算法对候选异
常子集进一步精化, 得到更加精确的异常点。 实验结果证明, 该算法能以较高的效率识别局部异常点, 提高了
算法的 F 1 值, 并且降低原 LOF 算法的误检率。

关键词: 隔离森林, 瀑布型混合技术, 异常检测, 局部离群因子检测

Abstract: iFores (isolation Forest) algorithm has a low detection ability for local outlier detection, and the
detection time of LOF (Local Outlier Factor) algorithm is longer, and a improved algorithm which can solve these
problems named iForest-WHT (isolation Forest based on Waterfall Hybrid Technology) is proposed. Based on the
idea of waterfall hybrid technology, the iForest algorithm is used as the filter, the split path is the threshold
judgment method, the data with path less than the threshold is put into the candidate anomaly subset. Then the
improved LOF algorithm considering the extreme value is used to refine the candidate anomaly subset to obtain
more accurate anomaly subset. The experimental results show that the algorithm can identify the outliers at higher
efficiency, improve the F 1 value of the algorithm and reduce the false alarm rate of the original LOF algorithm.

Key words: waterfall hybrid technology, local outlier factor, anomaly detection, isolation forest

中图分类号: 

  • TP391