吉林大学学报(信息科学版)

• 论文 • 上一篇    下一篇

基于非负矩阵分解的癫痫脑电自动检测

张雨烟, 陈万忠, 张 涛, 李明阳   

  1. 吉林大学 通信工程学院, 长春 130022
  • 收稿日期:2017-01-06 出版日期:2017-09-29 发布日期:2017-10-23
  • 作者简介: 张雨烟(1993— ), 女, 河南南阳人, 吉林大学硕士研究生, 主要从事模式识别与智能系统研究, (Tel)86-13944942486(E-mail)1224518412@ qq. com; 陈万忠(1964— ), 男, 长春人, 吉林大学教授, 博士生导师, 主要从事信号与信息处理、模式识别与智能系统研究, (Tel)86-13500801366(E-mail)chenwz@ jlu. edu. cn。
  • 基金资助:
     吉林省科技发展计划自然基金资助项目(20150101191JC)

Automatic Seizure Detection of Electroencephalogram Signals Based on Non-Negative Matrix Factorization

ZHANG Yuyan, CHEN Wanzhong, ZHANG Tao, LI Mingyang   

  1. College of Communication Engineering, Jilin University, Changchun 130022, China
  • Received:2017-01-06 Online:2017-09-29 Published:2017-10-23

摘要:  针对多分类癫痫检测算法因特征维数多而导致识别率不理想的问题, 提出了一种基于分数阶傅里叶变换
(FrFT: Fractional Fourier Transform)和非负矩阵分解(NMF: Non-negative Matrix Factorization)的癫痫脑电自动识
别算法。 首先采用 FrFT 对脑电信号进行时频聚焦, 并利用短时傅里叶变换 (STFT: Short-Time Fourier
Transform)提取脑电信号的时频特征; 再应用 NMF 对提取的时频特征进行降维; 最后将降维后的特征输入到支
持向量机(SVM: Support Vector Machine)分类器中进行识别。 实验结果表明, 该方法能识别正常、 癫痫发作间
期和癫痫发作期 3 类脑电信号, 其分类准确率可达 98. 8%。

关键词: 短时傅里叶变换,  癫痫检测, 非负矩阵分解, 分数阶傅里叶变换, 支持向量机

Abstract:  In order to overcome the issue of high-dimensional features or unsatisfactory accuracy for epileptic
seizure detection, we put forward an automatic seizure detection algorithm based on FrFT (Fractional Fourier
Transform) and NMF ( Non-negative Matrix Factorization). Firstly, FrFT was applied on the raw EEG
(Electroencephalogram) to perform time-frequency concentration. Subsequently, STFT (Short-Time Fourier
Transform) was carried out to characterize the time-frequency distribution of concentrated EEG. The generated
time-frequency matrix was reshaped and then reduced by NMF. At last, SVM (Support Vector Machine) was
employed to classify extracted features. Experimental results indicate that the proposed method is capable of
identifying normal, inter-ictal and epileptic EEG with an accuracy of 98. 8%.

Key words: short-time fourier transform(STFT), seizure detection, non-negative matrix factorization(NMF), fractional fourier transform(FrFT), support vector machine(SVM)

中图分类号: 

  • TP391. 4