吉林大学学报(信息科学版) ›› 2018, Vol. 36 ›› Issue (1): 14-19.

• 论文 • 上一篇    下一篇

基于混沌-量子粒子群的分簇路由算法

田思琪, 郎百和, 韩太林   

  1. 长春理工大学 电子信息工程学院, 长春 130022
  • 收稿日期:2017-08-07 出版日期:2018-01-25 发布日期:2018-03-14
  • 通讯作者: 郎百和(1971— ), 男, 黑龙江齐齐哈尔人, 长春理工大学副教授, 硕士生导师, 主要从事宽带无线网络技术研究, (Tel)86-13804462067(E-mail)langbhss@ gmail. com。
  • 作者简介:田思琪(1993— ), 女, 河北衡水人, 长春理工大学硕士研究生, 主要从事无线网络技术研究, (Tel)86-18843109278(E-mail)tiansq_work@163. com
  • 基金资助:
    国家自然科学基金资助项目(61540022)

Chaotic-Quantum Behaved Particle Swarm Optimization Based Clustering Routing Algorithm

TIAN Siqi, LANG Baihe, HAN Tailin   

  1. School of Electronics and Information Technology, Changchun University of Science and Technology, Changchun 130022, China
  • Received:2017-08-07 Online:2018-01-25 Published:2018-03-14

摘要: 针对粒子群分簇路由优化算法存在的收敛速度慢、 易陷入局部最优等问题, 提出一种混沌-量子粒子群
的双子粒子群分簇路由算法。 该算法以簇头的能量、 簇头与汇聚节点的距离以及与簇内成员节点的距离构造
最优簇头的代价函数, 主粒子群利用混沌粒子群寻优, 辅粒子群利用量子粒子群寻优, 加入量子波动理论, 使
算法具有较好的全局收敛性。 双子粒子群采用收敛速度快的凹函数递减策略优化权重。 仿真结果验证了该算
法可使无线传感网络节点能量消耗均衡化, 显著延长网络生命周期, 与 LEACH(Low-Energy Adaptive Clustering
Hierarchy)协议、 PSO-C(Cluster setup using Particle Swarm Optimization algorithm)协议相比生命周期分别延长了
80. 1%和 41. 4%。

关键词: 混沌粒子群, 权重, 分簇, 量子粒子群

Abstract:  In order to solve the problems of low convergence speed and sensitivity to local convergence for
particle swarm optimization clustering routing algorithm, a new clustering routing algorithm based on chaotic-
quantum TSPSO(Two-Swarm Particle Swarm Optimization) algorithm is proposed. The cost function of the
optimal cluster head is chosen according to the energy of the cluster head, the distance between the cluster head
and the convergence node and the distance structure of the cluster node. The main particle swarm is optimized by
using the chaotic particle swarm optimization, making the particle swarm alternately transformed between the
stable and chaotic states. The subgroups are optimized by quantum particle swarm optimization and the quantum
wave theory making the algorithm has better global convergence. The concave function decreasing strategy is
adopted to optimize the weight in the algorithm of TSPSO. The convergence speed is accelerated. The simulation
results show that the proposed algorithm can balance the energy consumption of the wireless sensor network nodes
and extend the network life cycle significantly, and compare with LEACH(Low-Energy Adaptive Clustering
Hierarchy)and PSO-C(Cluster setup using Particle Swarm Optimization algorithm)respectively extend by 80. 1%
and 41. 4%.

Key words: chaotic particle swarm, quantum particle group, weights,  clustering

中图分类号: 

  • TP393