吉林大学学报(信息科学版) ›› 2018, Vol. 36 ›› Issue (1): 78-84.

• 论文 • 上一篇    下一篇

基于 HABC-RBF 神经网络的蒸汽驱预测方法

倪红梅 a,b , 刘永建 a , 李盼池 b   

  1. 东北石油大学 a. 提高油气采收率教育部重点实验室; b. 计算机与信息技术学院, 黑龙江 大庆 163318
  • 收稿日期:2017-07-29 出版日期:2018-01-25 发布日期:2018-03-14
  • 作者简介:倪红梅(1975— ), 女, 吉林德惠人, 东北石油大学副教授, 博士, 主要从事神经网络和智能优化算法研究, (Tel)86-459-6503374(E-mail)nhm257@163. com; 刘永建(1955— ), 男, 辽宁辽中人, 东北石油大学教授, 博士生导师, 主要从事采油采气化学理论与工程方面研究, (Tel)86-459-6503374(E-mail)liuyongjian186@163. com。
  • 基金资助:
     国家科技重大专项课题基金资助项目(2016ZX05012-001); 国家自然科学基金资助项目(61170132); 东北石油大学培育基金资助项目(NEPUPY120224)

Prediction Method Based on Improved ABC Algorithm and RBF Neural Network

NI Hongmei a,b , LIU Yongjian a , LI Panchi b   

  1. a. State Key Laboratory of Enhanced Oil & Gas Recovery of Ministry of Education;
    b. School of Computer and Information Technology, Northeast Petroleum University, Daqing 163318, China
  • Received:2017-07-29 Online:2018-01-25 Published:2018-03-14

摘要: 为解决蒸汽驱开发效果预测精度低和时间长的问题, 提出了一种改进人工蜂群算法和 RBF(Radial Basis
Function)神经网络相融合的预测方法。 该方法应用种群最优解修改雇佣蜂解和观察蜂解的搜索方程, 借鉴差
分进化算法思想, 完成对种群最优解和个体搜索解随机扰动, 采用混合编码优化 RBF 神经网络参数。 以辽河
油田齐 40 块为例进行了试算, 结果表明, 该方法对蒸汽驱开发效果预测具有较好的非线性拟合能力和较高的
预测精度。

关键词: 人工蜂群算法, 随机扰动, 预测模型, 蒸汽驱, RBF 神经网络

Abstract: In order to solve the problem of low prediction precision and long prediction time of steam flooding
development effect, we propose a novel prediction method, which is based on the combination of improved
artificial bee colony algorithm and RBF (Radial Basis Function) neural network. In the proposed method, we
apply the optimal solution of the population to modify the search equation of the employed bees and the onlooker
bees, perform the random perturbation of the population optimal solution and individual search solution with the
idea of differential evolution algorithm, and adopt hybrid encoding to optimize the parameters of RBF neural
networks. We use the Qi 40 block of Liaohe Oilfield as an example and make a trial calculation. The trial results
show that the method has better nonlinear fitting ability and higher prediction accuracy for steam flooding
development effect prediction.

Key words: steam flooding, artificial bee colony algorithm, prediction model, radial basis function (RBF) neural network, random perturbation

中图分类号: 

  • TP183