吉林大学学报(信息科学版) ›› 2019, Vol. 37 ›› Issue (1): 1-7.
• • 下一篇
郑升,李月,董新桐#br#
ZHENG Sheng,LI Yue,DONG Xintong
摘要: 由于沙漠地震信号中含有较强的随机噪声,从而给沙漠地震数据的处理和解释带来了很大的困难。针对上述问题,提出了一种基于Shearlet 变换的深度残差卷积神经网络( ST-CNN: Deep Residual Convolutional Neural Network for Shearlet Transform) 模型,实现沙漠地震信号的随机噪声压制。在训练阶段,将沙漠地震信号经Shearlet 分解后的系数作为输入,将随机噪声经Shearlet 分解后的系数作为标签,通过卷积神经网络( CNN: Convolutional Neural Network) 学习输入和标签之间的映射关系; 在测试阶段,利用此映射关系即可从沙漠地震信号系数中预测出噪声系数,并间接地获得有效信号系数,最后通过Shearlet 反变换获得有效信号。通过与传统的Shearlet 硬阈值去噪算法对比,发现该算法可把沙漠地震信号的信噪比从- 4. 48 dB 提高到14. 15 dB,具有更好的去噪效果。
中图分类号: