吉林大学学报(信息科学版) ›› 2019, Vol. 37 ›› Issue (1): 107-112.

• • 上一篇    

利用信息交互最优权重改进神经网络的方法

徐阳1,张忠伟1,刘明2   

  1. 1. 东北石油大学电气信息与工程学院,黑龙江大庆163318;
    2. 中国石油天然气股份有限公司管道秦皇岛输油气分公司,河北秦皇岛066000
  • 出版日期:2019-01-24 发布日期:2019-05-09
  • 通讯作者: 张忠伟( 1965— ) ,男,黑龙江大庆人,东北石油大学副教授,主要从事信号检测与处理、模式识别等研究,( Tel) 86-13945629993( E-mail) zhangzw829@126. com。 E-mail:zhangzw829@126. com
  • 作者简介:徐阳( 1998— ) ,男,河南许昌人,东北石油大学本科生,主要从事神经网络、图像识别等研究,( Tel) 86-13351695831( E-mail) 1251772762@ qq. com; 通讯作者: 张忠伟( 1965— ) ,男,黑龙江大庆人,东北石油大学副教授,主要从事信号检测与处理、模式识别等研究,( Tel) 86-13945629993( E-mail) zhangzw829@126. com。
  • 基金资助:
    国家大学生创新计划基金资助项目( 201810220004)

Improving Neural Network Method by Using Information Interaction Optimal Weight

XU Yang1,ZHANG Zhongwei1,LIU Ming2   

  1. 1. School of Electrical Information and Engineering,Northeast Petroleum University,Daqing 163318,China;
    2. Pipeline Qinhuangdao Oil and Gas Branch,China National Petroleum Corporation,Qinhuangdao 066000,China
  • Online:2019-01-24 Published:2019-05-09

摘要: 由于卷积神经网络中多层感知器使用梯度下降算法进行训练,存在收敛速度慢和易于陷入局部极小的问题。针对此问题,提出一种利用信息交互计算最优初始化权重的方法改善网络结构,该方法可有效减少训练时间并可避免陷入局部极小。利用数学理论推导出ReLU 函数最优初始化权值的公式,利用该方法改进2-channel网络结构,直接代入数据可求出最优初始权值。通过3 个数据集的多次训练和测试,灰度图像的平均匹配准确率提升了1. 0%左右,FPR95 平均值也由5. 23 降至4. 65,初始化权重的设置可避免神经元进入硬饱和区,同时网络还具有效果稳定、收敛速度快的优点。

关键词: 神经网络, 权重, 信息交互

Abstract: Multilayer perceptrons of convolutional neural networks use the gradient descent algorithm for training,there are often problems of slow convergence and small localization. In order to solve the problem,we propose a method to calculate the optimal initialization weight by using information interaction to improve the proposed network structure,which can effectively reduce the training time and avoid the local minimum problem. Firstly we use mathematical theory to derive the formula for the optimal initialization weight of the ReLU function. We target 2-channel network structure using this method,directly substituting data to find the optimal initial weight.Through multiple training and testing of the three data sets,better results are obtained. Average matching accuracy for grayscale images is increased by about 1. 5%. For the FPR95,the average value also dropped from 5. 23 to 4. 65. Initialization weight setting prevents neurons from entering the hard saturated region. And it has the advantages of higher precision,stable effect and fast convergence.

Key words: neural network, weight, information interaction

中图分类号: 

  • TP183