吉林大学学报(信息科学版) ›› 2020, Vol. 38 ›› Issue (5): 529-536.

• • 上一篇    下一篇

基于 Copula 理论和高斯混合近似的半不变量研究

王金玉1,赵梓翔1,孙伟丹2   

  1. 1. 东北石油大学 电气信息工程学院, 黑龙江 大庆 163318;
    2. 大庆石油管理局 大庆油田力神泵业(太仓)有限公司, 江苏 苏州 215400
  • 收稿日期:2020-05-01 出版日期:2020-09-24 发布日期:2020-10-20
  • 通讯作者: 赵梓翔(1995— ), 男, 山东潍坊人, 东北石油大学硕士研究生, 主要从事电网规划研究,(Tel)86-13210684967(E-mail)759859496@qq.com.
  • 作者简介:王金玉(1973— ), 男, 济南人, 东北石油大学教授, 硕士生导师, 主要从事电力电子与电力传动和信号检测与处理研究,(Tel)86-13504662418(E-mail)949053778@qq.com.
  • 基金资助:
    东北石油大学研究生创新科研基金资助项目(JYCX-cxob-2018)

Research on Semi-Invariants Based on Copula Theory and Gaussian Mixture Approximation

WANG Jinyu1,ZHAO Zixiang1,SUN Weidan2   

  1. 1. School of Electrical Engineering and Information, Northeast Petroleum University, Daqing 163318, China;
    2. Daqing Oilfield Lishen Pump Industry (Taicang) Company Limited, Daqing Petroleum Administration Bureau, Suzhou 215400, China
  • Received:2020-05-01 Online:2020-09-24 Published:2020-10-20

摘要: 随着光伏可再生能源越来越多地并入电力系统, 传统的确定性潮流无法准确描述电力系统的实际运行状态。 为此, 提出了一种将半不变量法、 Copula 理论和高斯混合逼近法相结合的概率潮流分析方法。 该方法克服了现有的级数展开法无法逼近多峰概率分布的缺点, 考虑了输入总线功率的高斯型、 非高斯型和离散型概率分布的混合, 在不使用任何级数展开方法的情况下, 精确地得到了与这些相关输入的多模母线电压和线路功率流的概率分布。 同时, 考虑了多输入相关性, 在 IEEE14 和 IEEE57 节点系统中验证了该方法的性能。 实验结果表明, 该方法精确地建立了期望随机变量的多模态分布, 与 Gram-Charlier 法相比, 运行时间降低了 76% 。

关键词: 相关项, 半不变量, 高斯混合近似, 光伏发电, 概率潮流

Abstract: With more and more photovoltaic renewable energy integrated into the power system, the traditional deterministic power flow can not accurately describe the actual operation state of the power system. We present a probabilistic power flow analysis method which combines semi invariant method, Copula theory and Gaussian mixture approximation method. This method overcomes the shortcoming that the existing series expansion method can not approximate the multimodal probability distribution. The mixture of Gaussian, non Gaussian and discrete probability distributions of input bus power is considered. Without using any series expansion method, the probability distributions of multi-mode bus voltage and line power flow with these correlated inputs are obtained accurately. Multi input correlation is considered. The performance of this method is verified in IEEE14 and IEEE57 bus system. Experimental results show that the multi-modal distribution of the expected random variables is accurately established, and the running time of the proposed method is reduced by 76% compared to the Gram-Charlier method.

Key words: related items, semi-invariant, Gaussian mixture approximation, photovoltaic power generation;probabilistic power flow

中图分类号: 

  • TM71