吉林大学学报(信息科学版) ›› 2020, Vol. 38 ›› Issue (5): 624-631.
• • 上一篇
摘要: 为提高遥感图像对农作物的预估精度和农业种植效率, 设计了基于卫星遥感图像的农作物分类算法。 以2018 年 7 月 30 日哨兵二号(Sentinel-2)卫星拍摄的高分辨率哈尔滨市农业示范基地卫星影像为实验数据, 在不同光谱波段内(含红边波段), 通过使用最大似然法、 支持向量机法、 神经网络法分别对影像中水稻、 大豆、玉米、 高粱等农作物特征进行提取、 分类, 获得到农作物分类图;将统计结果与真实的参数进行比较, 分析了相同算法下使用不同数据源, 不同算法使用相同数据源, 这两种情况下的分类精度与可靠性。 实验结果表明,通过神经网络法得到的分类结果精度最高, 可靠性最强, 适合于全国范围内推广。
中图分类号: