吉林大学学报(信息科学版) ›› 2020, Vol. 38 ›› Issue (6): 688-693.
摘要: 传统去噪方法在处理高强度噪声干扰图像时, 往往不能有效去除噪声且在修复过程容易引入二次污染。为此, 提出一种边缘图导向的非局部图像均值滤波算法。 首先获取二阶差分边缘信息, 在非局部范围内搜索相似块, 以边缘导向图与噪声图像共同生成滤波器权值, 进而构建由边缘信息导向的非局部协同滤波框架。 与传统滤波为代表的局部线性滤波方法相比, 所提出算法能挖掘图像边缘信息并利用一种新的非局部协同滤波框架进行图像去噪, 因此增强了高强度噪声干扰环境下的边缘修复能力。 实验证明, 提出算法在高强度噪声污染的情况下, 修复的图像不仅获得了更高的测量指标, 视觉效果也更加理想。
中图分类号: