吉林大学学报(信息科学版) ›› 2020, Vol. 38 ›› Issue (6): 702-708.
摘要: 为准确识别视频目标个体完整行为动作序列, 增强视频行为识别精度, 提出一种基于超限学习机的深度网络时间分组行为识别方法。 首先按照人体行为关键姿态个数明确行为识别模型的状态数量, 建立人体运动行为多尺度结构关联, 把运动轨迹及边缘轮廓小波矩的不同尺度特征引入行为模型中, 获取人体运动行为概略特征; 其次利用视频分组稀疏抽样法, 将视频分割成等时长分组, 运用标准反向传播法优化模型参数, 实现低成本视频级时间建模, 并确保建模过程信息完整性; 最后根据隐含层激活函数输出及对应输出层权重系数,得到灵敏度解析式, 按照灵敏度参数对隐含节点进行排序, 删除次要节点, 实现深度网络时间分组行为的精准识别。 仿真实验结果表明, 该方法具备较高水准的识别精度, 且耗时少, 拥有极强的鲁棒性。
中图分类号: