平均值一阶鞍点近似,概率潮流,概率密度估计," /> 平均值一阶鞍点近似,概率潮流,概率密度估计,"/> 改进一阶鞍点近似的概率潮流

吉林大学学报(信息科学版) ›› 2021, Vol. 39 ›› Issue (3): 267-275.

• • 上一篇    下一篇

改进一阶鞍点近似的概率潮流

刘 超1 , 马天池1 , 王海生2   

  1. 1. 东北石油大学 电气信息工程学院, 黑龙江 大庆 163318; 2. 大庆石油有限责任公司 庆新油田开发有限责任公司, 黑龙江 大庆 163318
  • 收稿日期:2020-11-11 出版日期:2021-05-24 发布日期:2021-05-25
  • 作者简介:刘超(1986— ),女,辽宁宽甸人,东北石油大学讲师,主要从事电力电子与电力传动研究,(Tel) 86-18945931918 (E-mail)373157323@qq.com
  • 基金资助:
    国家自然科学基金资助项目(61873058)

Probabilistic Power Flow Based on Improved Saddle Point Approximation

LIU Chao1 , MA Tianchi1 , WANG Haisheng2   

  1. 1. School of Electrical Engineering and Information, Northeast Petroleum University, Daqing 163318, China;2. Qingxin Oilfield Development Company Limited, Daqing Petroleum Company Limited, Daqing 163318, China
  • Received:2020-11-11 Online:2021-05-24 Published:2021-05-25

摘要: 由于可再生能源和负荷的不确定性, 电力系统潮流分析需要有效的工具目前的多数研究都假设一组给定的概率密度函数(PDF: Probability Density Functions)建模不确定性, 并开发参数概率潮流工具为此, 提出了一种非参数概率潮流分析方法确定潮流输出的偏微分方程该方法基于平均值一阶鞍点近似对于 n 个随机变量系统, 利用潮流计算建立一阶 Taylor 级数展开, 然后采用鞍点近似确定期望输出变量的概率特性所提出的非参数估计器在需要合理的计算量的同时, 能提供精确的结果此外, 在不使用积分或微分算子的情况下, 直接建立了潮流输出的概率分布函数和累积分布函数IEEE 14 总线和 IEEE 118 总线测试系统上进行了测试, 所得结果与其他方法相比, MVFOSPA(Mean Value First Order Saddle Point Approximation) MCS(Monte Carlo Simulation)算法运行时间减少了12% , 验证了 MVFOSPA 方法的有效性

关键词: 平均值一阶鞍点近似')">平均值一阶鞍点近似, 概率潮流')">概率潮流, 概率密度估计')">概率密度估计

Abstract:  Due to the uncertainty of renewable energy and load, power flow analysis of the power system needs effective tools. Many existing literatures assume a given set of PDF ( Probability Density Functions) to model uncertainties and develop parametric probabilistic power flow tools. A nonparametric probabilistic power flow analysis method is proposed to determine the partial differential equation of power flow output. The method is based on the first order saddle point approximation of the mean value. For system with N random variables, the first order Taylor series expansion is established by power flow calculation, and then the probability characteristics of the expected output variables are determined by saddle point approximation. The proposed nonparametric estimator can provide accurate results while requiring reasonable computation. And the probability distribution function and cumulative distribution function of power flow output are directly established without using integral or differential operators. The test results on IEEE 14 bus and IEEE 118 bus test systems show that compared with other methods, mvfospa(Mean Value First Order Saddle Point Approximation) reduces the running time of MCS (Monte Carlo Simulation )algorithm by 12% . The effectiveness of MVFOSPA method is verified.

Key words: average first-order saddle point approximation, probability power flow, probability density estimation

中图分类号: 

  • TM71