吉林大学学报(信息科学版) ›› 2021, Vol. 39 ›› Issue (5): 609-616.

• • 上一篇    

基于深度学习的眼角膜图像自动化分析研究

孙 晖, 杨艾炯, 李康博, 孟浩楠, 牛立刚   

  1. 吉林大学 电子科学与工程学院, 长春 130012
  • 收稿日期:2021-05-19 出版日期:2021-10-01 发布日期:2021-10-01
  • 通讯作者: 牛立刚(1979— ) , 男, 山东菏泽人, 吉林大学高级工程师, 主要从事电子信息处理技术研究, (Tel)86-17790003021(E-mail)niulg@jlu.edu.cn。
  • 作者简介:孙晖(2000— ), 男, 山东德州人, 吉林大学本科生, 主要从事数字图像处理技术研究, ( Tel)86-17808042747(E-mail)1836741175@qq.com;
  • 基金资助:
    吉林大学大学生创新训练基金资助项目(202010183515)

Research on Automated Corneal Image Analysis Based on Deep Learning

SUN Hui, YANG Aijiong, LI Kangbo, MENG Haonan, NIU Ligang   

  1. College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
  • Received:2021-05-19 Online:2021-10-01 Published:2021-10-01

摘要: 为使本科生了解生物医学影像处理技术, 掌握深度学习方法, 结合吉林大学大学生创新创业训练计划, 设计了“基于深度学习的眼角膜图像自动化分析研究”实验项目。 在研发治疗角膜新生血管(CNV: Corneal Neovascularization)等疾病的药物过程中, 人们需要观察并获取小鼠眼角膜血管在药物影响下的生长情况及数 据。 为此设计了基于深度学习的眼角膜图像自动化分析程序, 以合作医院提供的经凝胶处理的小鼠眼角膜图 像为项目研究对象, 通过 Matlab 工具以及神经网络等深度学习算法完成对眼角膜特征的提取和分割。 采用 SegNet 语义分割网络和基于 SVM(Support Vector Machine)的图像分割两种方法实现小鼠眼角膜图像的自动提 取, 分析了两种方法下眼角膜提取的精度与可靠性。 结果表明, 使用 SegNet 语义分割网络得到的结果精度较 高, 其准确率可以达到 97. 75% 。

关键词: 信息科学与系统科学,  , 图像分割,  , 深度学习,  , 眼角膜

Abstract: In order to let the undergraduates understand biomedical image processing technology and master deep learning methods, combined with the innovation and entrepreneurship training program of Jilin University college students, the experimental project “Research on automated analysis of corneal images based on deep learning" is completed. To assist the medical research and development of effective drugs for the treatment of CNV(Corneal Neovascularization) diseases, it is necessary to observe and obtain data on the growth of mouse corneal blood vessels under the influence of drugs. Therefore, an automated corneal image analysis program based on deep learning is designed, where the gel-processed mouse corneal image provided by the cooperative hospital is used as the research object, and the corneal features are completed through MATLAB tools and deep learning algorithms such as neural networks. SegNet semantic segmentation network and SVM(Support Vector Machine)- based image segmentation are used to achieve automatic extraction of mouse corneal images. The accuracy and reliability of corneal extraction under the two methods are analyzed. The results show that the use of SegNet semantic segmentation network is high in accuracy, and its accuracy rate can reach 97. 75% .

Key words: information science and systems science, image segmentation, deep learning, corneal

中图分类号: 

  • TP397