吉林大学学报(信息科学版) ›› 2022, Vol. 40 ›› Issue (1): 1-6.

• •    下一篇

适用于温度系统的预测自适应 PID 控制方法

宿 刚, 刘 浩, 乔君丰, 郑 伟, 李德辉, 石景龙   

  1. 吉林大学 电子科学与工程学院, 长春 130012
  • 收稿日期:2021-07-04 出版日期:2022-01-25 发布日期:2022-01-25
  • 作者简介:宿刚(1994— ), 男, 吉林白山人, 吉林大学硕士研究生, 主要从事交联电缆生产线控制系统研究, (Tel)86-13756550859(E-mail)sugang01@sina.cn; 郑伟(1968— ), 男, 长春人, 吉林大学研究员, 主要从事半导体光电器件开发研究, (Tel)86-13596181558(E-mail) Zhengw@jlu.edu.cn
  • 基金资助:
    国家重点研发计划基金资助项目(2016YFE0200700)

Predictive PID Control Method for Temperature System

SU Gang, LIU Hao, QIAO Junfeng, ZHENG Wei, LI Dehui, SHI Jinglong   

  1. College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
  • Received:2021-07-04 Online:2022-01-25 Published:2022-01-25

摘要: 对具体的温度系统, 虽然大多数控制方法可以达到良好的控制效果, 但需要许多参数调节过程和其他前期工作, 针对此问题, 提出一种能普遍适用的, 结合模型预测控制的自适应 PID( Proportion Integration Differentiation)控制方法。 该方法包含一种简易的建模方法, 通过该模型得到预测的系统输出, 以未来一段
时间内预测的系统输出与期望之间的平方误差和最小原则指导 PID 控制器的参数变化。 在工业控制器 PLC(Programmable Logic Controller)上实现该方法, 通过具体实例验证, 与传统 PID 相比, 由于模型预测指导的参数自适应, 其控制精度较高, 输出稳定后最大误差不超过传感器最小分辨率; 收敛速度更快, 平均调节时间缩短了约 30% , 平均上升时间缩短 20% ~ 40% ; 且稳定性强, 最大动态偏差与 PID 在同一量级; 与其他模型预测方法相比, 该方法充分发挥了 PID 方法的鲁棒性, 有易于实现和普遍适用的特点。

关键词: 温度控制, 模型预测, 自适应 PID

Abstract: For a specific temperature system, although most control methods can achieve good control effect,they also increase a lot of parameter adjustment process and other preliminary work. A generally applicable adaptive PID ( Proportion Integration Differentiation) control method combined with model predictive control is proposed. This method includes a simple modeling method. The predicted system output is obtained through the model, and the parameter change of PID controller is guided by the principle of minimizing the sum of square error between the predicted system output and expectation in the future. The method is implemented on the industrial controller PLC(Programmable Logic Controller). It is verified that compared with the traditional PID,due to the parameter adaptation guided by the model prediction, its control accuracy is higher, and its maximum error does not exceed the minimum resolution of the sensor after the output is stable. The convergence speed is faster, the average adjustment time is shortened by about 30% , and the average rise time is shortened by 20% ~40% . It has strong stability, and the maximum dynamic deviation is the same order as PID. Compared with
other model prediction methods, this method gives full play to the robustness of PID method, and has the characteristics of easy implementation and universal application.

Key words: temperature control, model prediction, adaptive proportion integration differentiation (PID)

中图分类号: 

  • TP29