license plate recognition, light streak de-paste, convolutional neural networks ,"/> 基于暗光环境下光条纹去糊的车牌识别

吉林大学学报(信息科学版) ›› 2022, Vol. 40 ›› Issue (5): 836-845.

• • 上一篇    下一篇

基于暗光环境下光条纹去糊的车牌识别

李 亮1 , 鲁 铮1 , 赵靖华1 , 孙宏宇1 , 刘靓葳1,2   

  1. 1. 吉林师范大学 计算机学院, 吉林 四平 136000; 2. 长春金融高等专科学校 信息技术学院, 长春 130028
  • 收稿日期:2021-09-11 出版日期:2022-10-10 发布日期:2022-10-10
  • 作者简介:李亮(1998— ), 女, 长春人, 吉林师范大学硕士研究生, 主要从事图像识别研究, (Tel)86-13689830188(E-mail) lpllai@ 163. com; 赵靖华(1980— ), 男, 长春人, 吉林师范大学副教授, 主要从事计算机应用技术研究, (Tel)86-13654390225 (E-mail)zhaojh08@ mails. jlu. edu. cn。
  • 基金资助:
    吉林省科技发展计划基金资助项目( 20190302105GX; JJKH20210786KJ; JJKH20210457KJ); 吉师研创基金资助项目 (202023)

License Plate Recognition Based on Light Streak Deblurring in Dim Light Environment

LI Liang 1 , LU Zheng 1 , ZHAO Jinghua 1 , SUN Hongyu 1 , LIU Jingwei 1,2   

  1. 1. College of Computer, Jilin Normal University, Siping 136000, China; 2. College of Information Technology, Changchun Finance College, Changchun 130028, China
  • Received:2021-09-11 Online:2022-10-10 Published:2022-10-10

摘要: 针对传统的车牌识别算法对夜间车辆识别效果差, 准确率低等问题, 提出了一种基于改进光条纹去糊的 暗光环境下识别方法。 该算法引入了一个线性模糊模型估计模糊核的约束, 能更准确地估计模糊核和去模糊 图像, 改进后的图像具有更好的对比度和清晰度。 对车牌数据集的测试结果表明, 该方法能识别低光照度环境 下的车牌, 并在增强图像的同时较好地抑制噪声的干扰, 平均核相似度和峰值信噪比明显优于其他常规算法, 去糊前后的识别率模糊程度提高了 22. 6% 以上。

关键词: 车牌识别, 光条纹去糊, 卷积神经网络

Abstract: LPR(License Plate Recognition) in nighttime is one of the challenging works for developing artificial vehicle systems. Traditional license plate recognition algorithms have a low accuracy due to uneven lighting and camera shake exposure at nighttime. This paper proposes a novel license plate recognition algorithm based on improving light streak deblurring method, which introduces a constraint on the linear fuzzy model to estimate the fuzzy kernel. The method is able to estimate the blur kernel and deblurred image more accurately, and output image computed by the improved algorithm has better contrast ratio and resolution. We conduct the experiments on the benchmark license plate database, experimental results show that the proposed method in this paper is able to recognize license plates in low-illumination environments which has better resolution and contrast ratio with little interference resulted by noise, besides that its average kernel similarity and peak signal-to-noise ratio are significantly better than state-of-the-art works. The recognition accuracy improved at least 22. 6% compared the result without de-blurring.

Key words: license plate recognition')">

license plate recognition, light streak de-paste, convolutional neural networks

中图分类号: 

  • TP391. 4