3D reconstruction, porous media, Wasserstein distance, generative adversarial networks ,"/> 基于<span> WGAN </span>的多孔材料三维重建

吉林大学学报(信息科学版) ›› 2022, Vol. 40 ›› Issue (5): 854-892.

• • 上一篇    下一篇

基于 WGAN 的多孔材料三维重建

张傲克, 钱宇航, 齐 红   

  1. 吉林大学 计算机科学与技术学院, 长春 130012
  • 收稿日期:2022-03-20 出版日期:2022-10-10 发布日期:2022-10-10
  • 作者简介:张傲克(2001— ), 男, 长春人, 吉林大学本科生, 主要从事计算机视觉研究, (Tel)86-18844585192(E-mail)2489896404 @ qq. com; 齐红(1970— ), 女, 吉林省吉林市人, 吉林大学副教授, 主要从事计算机视觉研究, ( Tel)86-18543127305 (E-mail)qihong@ jlu. edu. cn。
  • 基金资助:
    吉林大学大学生创新创业训练基金资助项目(202110183180) 

3D Reconstruction of Porous Materials Based on WGAN

ZHANG Aoke, QIAN Yuhang, QI Hong   

  1. College of Computer Science and Technology, Jilin University, Changchun 130012, China
  • Received:2022-03-20 Online:2022-10-10 Published:2022-10-10

摘要: 为探索多孔材料在孔径尺度下的相关性质, 充分了解材料内部孔隙结构, 采用深度学习的方法近似多孔 材料的真实概率分布, 并利用随机数进行三维重建。 首先, 对已有的二值图像进行分割以获得大小合适、 数量 充足的数据集。 然后, WGAN(Wasserstein Generative Adversarial Networks)改造成能处理三维数据的生成对抗 模型, 并利用生成模型和服从高斯正态分布的随机噪声生成数据。 最后, 通过生成数据和真实数据对 WGAN 进行训练。 通过生成图像计算两点相关函数、 Minkowski 泛函和渗透率, 考察孔隙率、 比表面积与函数曲线的 拟合情况等相关参数, 并采用不同数据集进行测试。 结果表明, 基于 WGAN 的三维重建模型在不同的输入 条件下均具有较高准确性, 同时该算法还具有低时间复杂度的特性, 而且生成模型可以存储, 并能得到重 复利用。

关键词: 三维重建, 多孔材料, Wasserstein 距离, 生成对抗网络

Abstract: In order to explore the related properties of porous materials at pore size scale and better apply them to engineering, it is necessary to fully understand the internal pore structure of materials. Because it is difficult to obtain 3D CT images directly, the deep learning method is considered to approximate the real probability distribution of porous materials, and the random number is used for 3D reconstruction. Firstly, the existing binary images are segmented to obtain data sets with appropriate size and sufficient quantity. Then, WGAN (Wasserstein Generative Adversarial Networks) is transformed into a generativeadversarial model that can process three-dimensional data, and the data is generated by using generator andthe random noiseobeying Gaussian normal distribution. Finally, WGAN is trained by generating data and real data. By calculating the two-point correlation function, Minkowski functional and permeability of the generated image, the relevant parameters such as porosity, specific surface area and function curve fitting are investigated, and tested with different data sets. According to the results, the three-dimensional reconstruction model based on WGAN has high accuracy under different input conditions. At the same time, the algorithm also has the characteristics of low time complexity and the generated model can be stored and reused.

Key words: 3D reconstruction')">

3D reconstruction, porous media, Wasserstein distance, generative adversarial networks

中图分类号: 

  • TP391