吉林大学学报(信息科学版) ›› 2022, Vol. 40 ›› Issue (6): 1055-1066.

• • 上一篇    下一篇

基于遥感影像的校园周边建筑物变化检测研究

陈利国, 王一同, 牛雨欣, 王昊丰, 顾玲嘉   

  1. 吉林大学 电子科学与工程学院, 长春 130012
  • 收稿日期:2022-01-19 出版日期:2022-12-09 发布日期:2022-12-10
  • 通讯作者: 王昊丰(1982— ), 男, 内蒙古包头人, 吉林大学工程师, 主要从事数字信号处理技术研究,(Tel)86-18686458176(E-mail)whf@ jlu. edu. cn。
  • 作者简介:陈利国(2000— ) , 男, 山东潍坊人, 吉林大学本科生, 主要从事数字图像处理技术研究,(Tel)86-15318920308(E-mail)741441636@ qq. com。
  • 基金资助:
    吉林大学大学生创新训练基金资助项目(202010183X263)

Research on Change Detection of Buildings around Campus Based on Remote Sensing Images

CHEN Liguo, WANG Yitong, NIU Yuxin, WANG Haofeng, GU Lingjia   

  1. College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
  • Received:2022-01-19 Online:2022-12-09 Published:2022-12-10

摘要: 为使本科生了解卫星遥感技术、 掌握机器学习方法, 结合吉林大学大学生创新创业训练计划, 设计了 实验项目“基于遥感影像的校园周边建筑物变化检测研究冶。 以高分二号(GF鄄2)卫星影像与吉林一号夜间微光 影像为实验数据, 实验区域为中国某小学周边地区。 使用多种机器学习方法以提取实验区域内不同时段的 建筑物信息并对该结果进行精度分析; 将建筑物提取结果与地面参考数据进行对比, 最终获得了不同时间段的 建筑物的变化情况。 并且采用了吉林一号夜间微光影像对校园周边建筑与居民活动情况进行了分析。 实验 结果表明, 所选取的随机森林与 VGG(Visual Geometry Group)神经网络算法可对遥感影像中的建筑物进行有效 识别, 并通过不同时期建筑物数量和夜间灯光变化的检测结果, 说明了校园对周边地区发展的影响, 为城市 规划提供了参考信息

关键词: 卫星遥感,  , 变化检测,  , 微光数据,  , 建筑物提取

Abstract: In order to help undergraduates understand the technology of satellite remote sensing and master machine learning algorithms, combined with college student innovation training program in Jilin University, a project named “Research on Change Detection of Buildings around Campus Based on Remote Sensing Images" is designed. GF-2 satellite images and JL1-3B night time glimmer images are used as experimental data, and the area for experiment is around a primary school in China. Various machine learning algorithms are used to extract the message of buildings in the area for experiment in different periods, and the precision of the results is analyzed. The results of building extraction are compared with ground truth data. Finally, the changes of buildings in different periods are gained. The JL1-3B night time glimmer images are used to analyze the buildings around the school and the activities of residents. The experimental results show that buildings in the remote sensing images can be effectively discerned by random forest algorithm and VGG(Visual Geometry Group) neural network algorithm. The number of buildings in different periods and the results of change detection of lamp light show the influence of campus on the development of surrounding area and provide reference information for city planning.

Key words: satellite remote sensing,  , change detection,  , glimmer data,  , building extraction

中图分类号: 

  • TP751