吉林大学学报(信息科学版) ›› 2022, Vol. 40 ›› Issue (6): 898-907.

• • 上一篇    下一篇

基于低维流形学习的地震数据重构

叶文海1 , 林红波2   

  1. 1. 吉林省科维交通工程有限公司 工程部, 长春 130021; 2. 吉林大学 通信工程学院, 长春 130012
  • 收稿日期:2022-09-20 出版日期:2022-12-09 发布日期:2022-12-09
  • 通讯作者: 林红波(1973— ), 女, 长春人, 吉林大学教授, 主要从事信号与信息处理及其在地震勘探中应用研究, (Tel)86-13844167429(E-mail)hblin@ jlu. edu. cn.
  • 作者简介:叶文海(1973— ), 男, 长春人, 吉林省科维交通工程有限公司工程师, 主要从事信号检测及嵌入式技术研究, (Tel)86-18643116105(E-mail)404687366@ qq. com.
  • 基金资助:
    国家自然科学基金资助项目(41774117)

Low-Dimensional Manifold Learning Based Seismic Data Reconstruction

YE Wenhai 1 , LIN Hongbo 2   

  1. 1. Engineering Department, Jilin Kewei Traffic Engineering Company Limited, Changchun 130021, China; 2. College of Communication and Engineering,Jilin University, Changchun 130012, China
  • Received:2022-09-20 Online:2022-12-09 Published:2022-12-09

摘要: 为提高地震勘探精度, 需要从低信噪比地震勘探数据中高精度地重构地震信号, 为此结合卷积框架变换 的稀疏性和低维流形模型学习地震信号的灵活性, 提出基于卷积框架变换正则化低维流形模型(CFR-LDMM: Convolutional Framelet Regularization based Low Dimensional Manifold Model)的地震信号恢复算法。 通过数据驱动 的局部基和非局部基对地震信号块流形联合表示, 获得地震信号块流形的低维等距嵌入, 避免显示定义流形 坐标, 提升地震噪声压制能力和信号恢复度。 合成数据和实际地震勘探记录测试表明, 所提的CFR-LDMM方法能将地震数据的卷积框架变换系数能量集中到系数矩阵的一角, 在压制地震勘探噪声的同时准确地重构 了低信噪比地震数据中的缺失道。

关键词: 地震勘探; , 信号恢复; , 卷积框架小波变换; , 低维流形模型; , 噪声压制

Abstract: Seismic denoising and signal recovery is a key step to improve the quality and accuracy of seismic exploration. By combining the sparsity of the convolution framelet transform and the flexibility of the low dimensional manifold learning, a CFR-LDMM ( Convolutional Framelet Regularization based Low Dimensional Manifold Model) is proposed for seismic signal recovery by using the convolution framelet coefficient energy as the low dimensional constrains. The seismic signals are then jointly represented on the low dimensional manifold in a certain embedded space by the data-driven local and nonlocal basis function, avoiding explicitly defining the manifold coordinate function. Therefore, the significant improvement is made on the denoising ability and signal recovery accuracy. The results of the synthetic and field seismic data tests show that the CFR-LDMM can concentrate the energy of the framelet coefficients for seismic data into a certain block in the coefficient matrix, and the seismic random noise can be removed and the missing traces can be reconstructed well at low signal-to-noise ratio.

Key words: seismic exploration; , signal recovery; , convolution framelet transform; , low dimensional manifold model; , denoising

中图分类号: 

  • TN911. 7