吉林大学学报(信息科学版) ›› 2022, Vol. 40 ›› Issue (6): 908-917.

• • 上一篇    下一篇

基于 VMD-熵方法的管道信号特征提取方法

侯 男a,b,c , 张 超a,b,c , 路敬祎a,b,c , 宋南南a,b,c   

  1. 东北石油大学 a. 三亚海洋油气研究院, 海南 三亚 572025; b. 人工智能能源研究院; c. 黑龙江省网络化与智能控制重点实验室, 黑龙江 大庆 163318
  • 收稿日期:2022-04-13 出版日期:2022-12-09 发布日期:2022-12-09
  • 通讯作者: 路敬祎(1977— ), 男, 黑龙江肇州人, 东北石油大学副教授, 博士,硕士生导师, 主要从事油气管网检测、 信号处理、 工业故障诊断以及人工智能等领域研究, (Tel)86-18745977959(E-mail)ljywdm@ 126. com.
  • 作者简介:侯男(1990— ), 女, 黑龙江巴彦人, 东北石油大学副教授, 博士, 硕士生导师, 主要从事网络化系统控制研究,(Tel)86-13836988703(E-mail)bayan2@ 163. com.
  • 基金资助:
    国家自然科学基金资助项目(U21A2019; 61873058; 11902072; 62073070; 62103096); 海南省科技专项基金资助项目 (ZDYF2022SHFZ105); 海南省科技计划三亚崖州湾科技城联合基金资助项目(2021JJLH0025); 黑龙江省自然科学基金资 助项目(LH2020F005)

Feature Extraction Method Based on VMD-Entropy Method

HOU Nan a,b,c , ZHANG Chao a,b,c , LU Jingyi a,b,c , SONG Nannan a,b,c   

  1. a. Sanya Offshore Oil & Gas Research Institute, Sanya 572025, China; b. Artificial Intelligence Energy Research Institute; c. Heilongjiang Key Laboratory of Networking and Intelligent Control, Northeast Petroleum University, Daqing 163318, China
  • Received:2022-04-13 Online:2022-12-09 Published:2022-12-09

摘要: 由于仪器设备工作以及室外环境等因素的影响, 采集的管道信号中会存在一定的随机噪声, 使原始信号 失去本身特征, 导致无法对管道信号进行准确识别, 为此, 提出一种基于变分模态分解(VMD: Variational Mode Decomposition)算法-熵方法的特征提取方法。 首先基于VMD算法对采集的管道工况信号进行去噪处理, 然后 从能量、 冲击特性、 时间序列复杂性3个角度全面提取不同工况下的信号特征, 分别计算3种工况信号重构后 信号的能量熵、峭度熵以及模糊熵, 最后建立特征向量输入到极限学习机中进行工况识别。 实验结果表明, 该特征提取方法相比其他特征参数能更加准确地分类识别管道工况信号, 识别率达到98. 33% , 证明该方法对 管道泄漏信号分类识别的可行性。

关键词: 管道泄漏; , 熵方法; , 特征提取; , 极限学习机

Abstract:

Due to the influence of instrument and equipment work, outdoor environment and other factors, there will be some random noise in the collected pipeline signal, which will make the original signal lose its characteristics, leading to the failure to accurately identify the pipeline signal. Therefore, a feature extraction method based on VMD (Variational Mode Decomposition) algorithm-entropy method is proposed. First VMD algorithm based on working condition of gathering pipeline deals with the noise signal, then from energy, impact properties, three angles, complexity of time series extracts signal characteristics under different working conditions of three kinds of signal reconstruction after the signal are calculated separately, and the energy entropy, kurtosis entropy and fuzzy entropy, and finally establishs characteristic vector input to the extreme learning machine to identify the condition. The experimental results show that the method proposed can classify and recognize pipeline working condition signals more accurately than other feature parameters, and the recognition rate is up to 98. 33% , which proves the feasibility of this method to classify and recognize pipeline leakage signals.

Key words: pipeline leakage; , entropy method; , feature extraction; , extreme learning machine

中图分类号: 

  • TN911. 7