吉林大学学报(信息科学版) ›› 2022, Vol. 40 ›› Issue (6): 963-969.

• • 上一篇    下一篇

基于改进生成对抗网络的抽油机故障诊断方法

刘远红1 , 王庆龙1 , 张文华2 , 张彦生1 , 李 鑫3   

  1. 1. 东北石油大学 电气信息工程学院, 黑龙江 大庆 163318; 2. 杭州紫雨科技发展有限公司, 杭州 310000; 3. 大庆油田有限责任公司 大庆钻探工程公司, 黑龙江 大庆 163458
  • 收稿日期:2022-03-22 出版日期:2022-12-09 发布日期:2022-12-10
  • 作者简介:刘远红(1979— ), 男, 湖南邵阳人, 东北石油大学副教授, 主要从事机器学习研究,( Tel) 86-13845995989 ( E-mail)liuyuanhong@ nepu. edu. cn.

Fault Diagnosis Method of Pumping Unit Based on Improved Generative Adversarial Networks

LIU Yuanhong 1 , WANG Qinglong 1 , ZHANG Wenhua 2 , ZHANG Yansheng 1 , LI Xin 3   

  1. 1. College of Electrical Information and Engineering, Northeast Petroleum University, Daqing 163318, China; 2. Hangzhou Purple Rain Technology Development Company Limited, Hangzhou 310000; 3. Daqing Drilling & Exploration Engineering Company, China Nationa Petroleum Corporation, Daqing 163458, China
  • Received:2022-03-22 Online:2022-12-09 Published:2022-12-10

摘要: 针对抽油机故障数据不足、 样本分布不均衡的问题, 提出一种基于自注意力机制的条件深度卷积生成对抗 网络(CDCGAN: Conditional Deep Convolutional Generative Adversarial Networks)模型。 该模型在 CDCGAN 的基础上 引入自注意力机制, 并在损失函数中加入约束生成图像分布的正则项, 提高了生成图像的质量和多样性, 有效地 防止了模式崩溃的发生。 采用 AlexnetVGG16 等网络对生成的抽油机故障样本进行分类测试, 实验结果表明, 改进网络的生成数据质量更高, 能够有效平衡抽油机故障数据,进一步提升了抽油机故障诊断的准确率。

关键词: 故障诊断,  , 生成对抗网络,  , 自注意力机制,  , 模式崩溃

Abstract: Aiming at the problems of insufficient data and unbalanced sample distribution of oil pumping unit failures, a CDCGAN(Conditional Deep Convolutional Generative Adversarial Networks) model based on self-attention mechanism is proposed. The model adds a regular term to the loss function that constrains the distribution of generated images, improves the quality and diversity of generated images and effectively prevents the occurrence of mode collapse. Using Alexnet, VGG16 and other networks to classify and test the generated pumping unit fault samples, the experimental results show that the improved network generates higher quality data, can effectively balance the pumping unit fault data, and further improves the accuracy of the pumping unit fault diagnosis rate.

Key words: fault diagnosis,  , generative adversarial networks,  , self attention mechanism,  , mode collapse

中图分类号: 

  • TP391