吉林大学学报(信息科学版) ›› 2023, Vol. 41 ›› Issue (4): 621-630.

• • 上一篇    下一篇

特征更新的动态图卷积表面损伤点云分割方法 

张闻锐, 王从庆   

  1. 南京航空航天大学 自动化学院, 南京 210016
  • 收稿日期:2022-09-21 出版日期:2023-08-16 发布日期:2023-08-17
  • 作者简介:张闻锐(1998— ), 男, 江苏扬州人, 南京航空航天大学硕士研究生, 主要从事点云分割研究, ( Tel) 86-18851878397 (E-mail)839357306@ qq. com; 王从庆(1960— ), 男, 南京人, 南京航空航天大学教授, 博士生导师, 主要从事模式识别 与智能系统研究, (Tel)86-13051426390(E-mail)cqwang@ nuaa. edu. cn。
  • 基金资助:
    国家自然科学基金资助项目(61573185)

Cloud Segmentation Method of Surface Damage Point Based on Feature Adaptive Shifting-DGCNN

ZHANG Wenrui, WANG Congqing   

  1. School of Automation, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
  • Received:2022-09-21 Online:2023-08-16 Published:2023-08-17

摘要: 针对金属部件表面损伤点云数据对分割网络局部特征分析能力要求高, 局部特征分析能力较弱的传统算 法对某些数据集无法达到理想的分割效果问题, 选择采用相对损伤体积等特征进行损伤分类, 将金属表面损伤 分为 6 , 提出一种包含空间尺度区域信息的三维图注意力特征提取方法。 将得到的空间尺度区域特征用于 特征更新网络模块的设计, 基于特征更新模块构建出了一种特征更新的动态图卷积网络( Feature Adaptive Shifting-Dynamic Graph Convolutional Neural Networks)用于点云语义分割。 实验结果表明, 该方法有助于更有效 地进行点云分割, 并提取点云局部特征。 在金属表面损伤分割上, 该方法的精度优于 PointNet+ + DGCNN (Dynamic Graph Convolutional Neural Networks)等方法, 提高了分割结果的精度与有效性。

关键词: 点云分割, 动态图卷积, 特征更新, 损伤分类

Abstract: The cloud data of metal part surface damage point requires high local feature analysis ability of the segmentation network, and the traditional algorithm with weak local feature analysis ability can not achieve the ideal segmentation effect for the data set. The relative damage volume and other features are selected to classify the metal surface damage, and the damage is divided into six categories. This paper proposes a method to extract the attention feature of 3D map containing spatial scale area information. The obtained spatial scale area feature is used in the design of feature update network module. Based on the feature update module, a feature updated dynamic graph convolution network is constructed for point cloud semantic segmentation. The experimental results show that the proposed method is helpful for more effective point cloud segmentation to extract the local features of point cloud. In metal surface damage segmentation, the accuracy of this method is better than pointnet++, DGCNN(Dynamic Graph Convolutional Neural Networks) and other methods, which improves the accuracy and effectiveness of segmentation results. 

Key words: point cloud segmentation, dynamic graph convolution, feature adaptive shifting, damage classification

中图分类号: 

  • TP391. 41