吉林大学学报(信息科学版) ›› 2023, Vol. 41 ›› Issue (4): 676-684.

• • 上一篇    下一篇

基于细粒度图像分类算法的新冠 CT 图像分类

 蔡 茂, 刘 芳   

  1. 长春工业大学 数学与统计学院, 长春 130012
  • 收稿日期:2022-09-26 出版日期:2023-08-16 发布日期:2023-08-17
  • 通讯作者: 刘芳(1982— ), 女, 辽宁铁岭人, 长春工业大学副教授, 硕士 生导师, 主要从事偏微分方程数值计算和大数据分析研究, (Tel)86-13610708823(E-mail)liufang82@ ccut. edu. cn。
  • 作者简介:蔡茂(1998— ), 男, 河南信阳人, 长春工业大学硕士研究生, 主要从事机器学习、 大数据分析和图像处理研究, (Tel) 86-15188250733(E-mail)1291818117@ qq. com;
  • 基金资助:
    吉林省科技厅自然科学基金资助项目(20200201273JC)

CT Image Classification of COVID-19 Based on Fine-Grained Image Classification Algorithms

CAI Mao, LIU Fang   

  1. College of Mathematics and Statistics, Changchun University of Technology, Changchun 130012, China
  • Received:2022-09-26 Online:2023-08-16 Published:2023-08-17

摘要: 为解决新型冠状病毒肺炎(COVID-19: Corona Virus Disease 2019)计算机辅助诊断相关问题, 建立双线性 卷积神经网络模型, 选取 VGG(VGG: Visual Geometry Groupnetwork)16 VGG19 网络作为特征提取子网络, 将 算法应用于新冠图像分类, 并与基本图像分类算法进行对比。 计算结果和病灶可视化分析表明, 与其他深度 学习网络模型相比, 双线性卷积神经网络模型具有更高的精度, 准确度高达 95. 19% 。 通过替换原始分类层, 采用支持向量机分类器, 模型分类准确度进一步提高至 96. 78% 。 研究结果证实了细粒度图像算法在新冠 CT 图像分类上的可行性, 为快速正确诊疗新冠肺炎提供了可靠的工具。

关键词: 图像分类, 双线性卷积神经网络, 支持向量机, 新冠肺炎 

Abstract: In order to solve the problem of computer aided diagnosis of novel coronavirus pneumonia (Covid-19: Corona virus disease 2019), a bilinear convolutional neural network model is created and a feature extraction subnetwork with VGG(Visual Geometry Group network) 16 and VGG19 is employed. The algorithm is applied to COVID-19 image classification and compared with the basic image classification algorithm. The results and lesion visualization analyses demonstrate that the bilinear convolutional neural network model outperforms other deep learning network models in terms of accuracy, with an accuracy of 95. 19% . By replacing softmaxlayer and using SVM(Support Vector Machines) classifier, the model classification accuracy is improved to 96. 78% . The study provides a trustworthy tool for the quick and accurate diagnosis and treatment of neonatal pneumonia and a confirmation of the viability of fine-grained imaging algorithms for the categorization of COVID-19 CT images. 

Key words: image classification, bilinear convolutional neural network, support vector machines ( SVM), Corona Virus Disease 2019(COVID-19)

中图分类号: 

  • TP183