吉林大学学报(信息科学版) ›› 2023, Vol. 41 ›› Issue (4): 752-758.

• • 上一篇    下一篇

深度学习下的校园监控网络欺骗攻击检测算法 

钱 鑫   

  1. 南京航空航天大学 信息化处, 南京 210007
  • 收稿日期:2022-04-21 出版日期:2023-08-16 发布日期:2023-08-18
  • 作者简介:钱鑫(1981— ), 男, 江苏靖江人, 南京航空航天大学工程师, 主要从事网络安全、 软件工程、 项目管理等研究, (Tel)86- 13915962832(E-mail)qqxx9631@ 126. com。
  • 基金资助:
    江苏省自然科学基金资助项目(F2020008)

Detection Method of Deception Attack for Campus Surveillance Network Based on Deep Learning Algorithm 

QIAN Xin   

  1. Information Technology Department, Nanjing University of Aeronautics and Astronautics, Nanjing 210007, China
  • Received:2022-04-21 Online:2023-08-16 Published:2023-08-18

摘要: 针对网络欺骗攻击检测过程中易受信号强度、 监控配置和路由器性能等干扰问题, 提出了基于深度学习 算法的校园监控网络欺骗攻击检测方法。 利用深度学习网络中的自编码器对校园监控网络流量数据进行降维 处理, 使用自编码器构成的栈示编码器对降维后的流量数据实行特征提取, 并将提取的特征输入置信度神经 网络中, 根据输出的置信度数值与固定阈值相比较判断网络欺骗攻击的类型, 完成校园监控网络欺骗攻击的 检测。 实验结果表明, 该方法的检测时间短、 检出率高、 误报率低。

关键词: 自编码器, 栈示编码器, 特征提取, 置信度神经网络, 置信度损失函数 

Abstract: Network spoofing attack detection is an indispensable link in maintaining the normal operation of campus monitoring network, but the detection process is easily disturbed by problems such as signal strength, monitoring configuration and router performance. Therefore, a spoofing attack detection method of campus monitoring network based on deep learning algorithm is proposed. The self encoder in the deep learning network is used to reduce the dimension of the campus monitoring network traffic data, and the stack encoder composed of the self encoder is used to extract the features of the reduced dimension traffic data, the extracted features into is input the confidence neural network, the type of network spoofing attack is judged according to the comparison between the output confidence value and the fixed threshold, and the detection of campus monitoring network spoofing attack is completed. The experimental results show that the proposed method has the advantages of short detection time, high detection rate and low false alarm rate. 

Key words: autoencoder, stack encoder, feature extraction, confidence neural network, confidence loss function

中图分类号: 

  • TP393. 08