吉林大学学报(信息科学版) ›› 2024, Vol. 42 ›› Issue (2): 193-199.

• •    下一篇

信号干扰下的超宽带精确定位问题研究

张爱琳 1a,1b, 刘 辉2 , 王小海2 , 张秀伊1a,1b , 邱正中1a,1b , 吴春国1a,1b   

  1. 1. 吉林大学 a. 符号计算与知识工程教育部重点实验室; b. 计算机科学与技术学院, 长春 130012; 2. 远光软件股份有限公司 技术部, 广东 珠海 519085
  • 收稿日期:2023-05-07 出版日期:2024-04-10 发布日期:2024-04-12
  • 通讯作者: 吴春国(1976— ), 男, 黑龙江鹤岗人, 吉林大学副教授, 主要从事进化计算和机器学习研究, (Tel)86-13604316153(E-mail)wucg@ jlu. edu. cn E-mail:wucg@ jlu. edu. cn
  • 作者简介:张爱琳(1997— ), 女, 辽宁辽阳人, 吉林大学硕士研究生, 主要从事神经网络研究, ( Tel) 86-15304304272 ( E-mail) aileenz20@ 163. com
  • 基金资助:
    吉林省科技发展计划基金资助项目(20230201083GX) 

Research on Precise Positioning of Ultra Wide Band with Signal Interference

ZHANG Ailin 1a,1b , LIU Hui 2 , WANG Xiaohai 2 , ZHANG Xiuyi 1a,1b , QIU Zhengzhong 1a,1b , WU Chunguo 1a,1b   

  1. 1a. Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education; 1b. College of Computer Science and Technology, Jilin University, Changchun 130012, China; 2. Technical Department, Yuanguang Software Company Limited INC, Zhuhai 519085, China
  • Received:2023-05-07 Online:2024-04-10 Published:2024-04-12

摘要:  针对在室内应用超宽带 UWB(Ultra Wide Band)定位技术时, 需要建立高效精确的三维坐标定位系统以 克服信号干扰问题, 应用机器学习方法对其进行了研究。 首先使用多种统计分析模型清理无效或误差测量值; 然后将 TOF(Time Of Flight)算法的先验知识与神经网络、 XGBoost(eXterme Gradient Boosting)算法相结合, 提出 了神经XGB(Exterme Gradient Boosting)三维定位系统, 该系统可通过“正常数据冶和“异常数据冶 (受干扰)以及 4 个锚点的坐标精准预测靶点的坐标值, 能使误差在二维平面降至 5. 08 cm, 在三维空间降至 8. 03 cm; 同时 建立了判断数据是否受干扰的神经网络分类模型, 精确率为 0. 88; 最后通过结合上述系统, 得到了连续且规律 的运动轨迹, 证明了系统的有效性与鲁棒性。

关键词: UWB 精准定位, 神经网络, XGBoost 算法, 逻辑回归

Abstract: In the field of indoor applications of UWB(Ultra Wide Band) positioning technology, it is important to establish an efficient and accurate 3D coordinate positioning system to overcome signal interference. Machine learning methods are used to investigate the problem of accurate positioning of indoor UWB signals under interference. Firstly, various statistical analysis models are used to clean up invalid or error measurements, then the a priori knowledge of TOF ( Time Of Flight) algorithm is combined with neural network and XGBoost algorithm to build a neural XGB(Exterme Gradient Boosting) 3D oriented system. The system can accurately predict the coordinate value of the target point by “ normal data冶 and “ abnormal data冶 ( disturbed), the coordinates of four anchor points, and the final error is as low as 5. 08 cm in two鄄dimensional plane and 8. 03 cm in three鄄dimensional space. A neural network classification system is established to determine whether the data is disturbed or not, with an accuracy of 0. 88. Finally, by combining the above systems, continuous and regular motion trajectories are obtained, which proves the effectiveness and robustness of the systems.

Key words: ultra wide band ( UWB ) precision positioning, neural network, XGBoost algorithm, logistic regression 

中图分类号: 

  •