吉林大学学报(信息科学版) ›› 2024, Vol. 42 ›› Issue (3): 559-566.

• • 上一篇    下一篇

基于改进 Yolov3-Tiny 的加油站目标检测算法研究 

张利巍, 杨万帅   

  1. 东北石油大学 物理与电子工程学院, 黑龙江 大庆 163318
  • 收稿日期:2022-11-30 出版日期:2024-06-18 发布日期:2024-06-18
  • 作者简介:张利巍(1980— ), 女, 黑龙江勃利人, 东北石油大学副教授, 硕士生导师, 主要从事智能识别与检测研究, ( Tel)86- 13845940021(E-mail)liweizhang419@ 163. com

Research on Gas Station Target Detection Algorithm Based on Improved Yolov3-Tiny 

ZHANG Liwei, YANG Wanshuai   

  1. School of Physics and Electronic Engineering, Northeast Petroleum University, Daqing 163318, China
  • Received:2022-11-30 Online:2024-06-18 Published:2024-06-18

摘要: 针对加油站场景中的目标检测算法存在检测精度低的问题, 提出一种基于 Yolov3-Tiny 的加油站场景目标检测改进算法。 该算法以 Yolov3-Tiny 模型为基础网络, 引入 Yolov4 算法提出的 Mosaic 图像增强方式进行数据预处理, 采用密集连接模块重构特征提取网络, 并将 CBAM (Convolutional Block Attention Module)注意力模块与金字塔池化模块 (Pyramid Pooling Module)加入到网络中, 最终实现了加油站场景下的目标检测。 实验结果表明, 改进的算法相比于原算法的总体 mAP 提升了 8. 2% , 能更有效地应用于加油站目标检测中。

关键词: 目标检测, 密集连接模块, 注意力机制, 金字塔池化模块, 图像增强 

Abstract: We present an improved target detection algorithm based on Yolov3-Tiny for gas station scene because of the low accuracy of target detection algorithm in gas station scenes. This algorithm takes Yolov3-Tiny model as the basic network, innovates Mosaic image enhancement method proposed in Yolov4 algorithm for data preprocessing, uses dense connection modules to reconstruct the feature extraction network, and adds CBAM (Convolutional Block Attention Module) attention mechanism and Pyramid Pooling Module into the network, finally target detection in the gas station scene is realized. The experimental results show that the improved algorithm improves the overall mAP by 8. 2% compared with the original algorithm, and can be more effectively applied to gas station target detection.

Key words: target detection, dense connection module, attention mechanism, pyramid pool module, image enhancement

中图分类号: 

  • TP183