吉林大学学报(信息科学版) ›› 2024, Vol. 42 ›› Issue (4): 690-699.

• • 上一篇    下一篇

基于多方向特征和连通性检测的眼底图像分割

窦全胜1,2, 李丙春1, 刘静1, 张家源2   

  1. 1. 喀什大学 计算机科学与技术学院, 新疆 喀什 844008; 2. 山东工商学院 计算机科学与技术学院, 山东 烟台 264005
  • 收稿日期:2023-10-25 出版日期:2024-07-22 发布日期:2024-07-22
  • 作者简介:窦全胜(1971— ), 男, 黑龙江大庆人, 山东工商学院教授, 喀什大学天池计划主讲教授, 博士, 硕士生导师, 主要从事深度学习与数据挖掘研究, ( Tel)86-13361339529( E-mail) douqsh@ sdtbu. edu. cn。
  • 基金资助:

     国家自然科学基金资助项目( 61976124; 61976125 ); 新疆维吾尔自治区自然科学基金资助项目( 2022D01A237; 2022D01A238)

Vessel Image Segmentation Based on Multi-Directional Features and Connectivity Detection

DOU Quansheng1,2 , LI Bingchun1, LIU Jing1 , ZHANG Jiayuan2   

  1. 1. School of Computer Science and Technology, Kashi University, Kashi 844008, China; 2. School of Computer Science and Technology, Shandong Technology and Business University, Yantai 264005, China
  • Received:2023-10-25 Online:2024-07-22 Published:2024-07-22

摘要:

针对眼底图像中存在大量不规则、噪声干扰严重、边界模糊、分割难度较大的细小血管的问题, 提出一种基于多方向特征和连通性检测的眼底图像分割方法MDF_Net&CD( Multi-Directional Features neural Network and Connectivity Detection)。 设计了一个以像素点不同方向特征向量为输入的深度神经网络模型MDF_Net ( Multi-Directional Features neural Network), 利用 MDF_Net 对眼底图像进行初步分割; 提出连通性检测算法, 根据血管的几何特征, 对 MDF_Net 的初步分割结果进一步修订。在公开的眼底图像数据集上, 将 MDF_Net&CD与近期有代表性的分割方法进行实验对比, 结果表明 MDF_Net&CD 各项评估指标均衡, 敏感度,F1 值和准确率优于其他方法。该方法能有效捕捉像素点的细节特征, 对不规则、噪声干扰严重、边界模糊的细小血管有较好分割效果。

关键词: 眼底血管分割, 多方向特征, 连通性检测, 深度神经网络

Abstract: Fundus images often contain a large number of small blood vessels with significant noise interference and blurred boundaries, making segmentation challenging. To address these characteristics, a fundus image segmentation method called MDF _Net&CD ( Multi-Directional Features neural Network and Connectivity Detection) is proposed, based on multidirectional features and connectivity detection. A deep neural network model, MDF_Net( Multi-Directional Features neural Network), is designed to take different directional feature vectors of pixels as input. MDF_Net is used for the initial segmentation of the fundus images. A connectivity detection algorithm is proposed to revise the preliminary segmentation results of MDF _ Net, according to the geometric characteristics of blood vessels. In the public fundus image dataset, MDF_Net&CD is compared with recent representative segmentation methods. The experimental results show that MDF_Net&CD can effectively capture the detailed characteristics of pixels, and has a good segmentation effect on irregular, severely noisy, and blurred boundaries of small blood vessels. The evaluation indices are balanced, and the sensitivity, F1 score, and accuracy are better than other methods participating in the comparison.

Key words: vessel image segmentation, multi-directional features, connectivity detection, deep neural network

中图分类号: 

  • TP391. 41