吉林大学学报(信息科学版) ›› 2024, Vol. 42 ›› Issue (5): 829-839.

• • 上一篇    下一篇

基于混合策略的蜣螂优化算法研究

秦喜文a,b, 冷春晓a,b, 董小刚a,b    

  1. 长春工业大学a. 数学与统计学院;b. 大数据科学研究院,长春130012
  • 收稿日期:2023-09-18 出版日期:2024-10-21 发布日期:2024-10-21
  • 通讯作者: 董小刚(1961— ), 男, 长春人, 长春工业大学教授, 博士生 导师, 主要从事经济统计、时间序列分析研究,(Tel)86-18043215853(E-mail)dongxiaogang@ccut. edu. cn。
  • 作者简介:秦喜文(1979— ),男,吉林梅河口人,长春工业大学教授,博士生导师,主要从事机器学习、大数据分析研究,(Tel)86- 13504332781(E-mail)qinxiwen@ ccut. edu. cn
  • 基金资助:
    国家自然科学基金资助项目(12026430); 吉林省科技厅基金资助项目(20200403182SF;20210101149JC) 

 Research on Dung Beetle Optimization Algorithm Based on Mixed Strategy

QIN Xiwena,b, LENG Chunxiaoa,b, DONG Xiaoganga,b   

  1. a. School of Mathematics and Statistics; b. Institute of Big Data Science, Changchun University of Technology, Changchun 130012, China
  • Received:2023-09-18 Online:2024-10-21 Published:2024-10-21

摘要: 针对蜣螂优化算法存在易陷入局部最优、全局探索和局部开发能力不平衡等问题,为提升蜣螂优化算法 的寻优能力,提出一种混合策略的蜣螂优化算法。 采用Sobol序列初始化种群,以使蜣螂种群更好地遍历整个 解空间;在滚球蜣螂位置更新阶段加入黄金正弦算法, 提高收敛速度和寻优精度; 引入混合变异算子进行 扰动,提高算法跳出局部最优的能力。 对改进的算法进行8个基准函数的测试,并与灰狼优化算法、鲸鱼优化 算法和蜣螂优化算法等进行比较,并验证了3种改进策略的有效性。 结果表明,混合策略的蜣螂优化算法在 收敛速度、鲁棒性和寻优精度有明显增强。 

关键词: 蜣螂优化算法, Sobol序列, 黄金正弦算法, 混合变异算子 

Abstract: The dung beetle optimization algorithm suffers from the problems of easily falling into local optimum, imbalance between global exploration and local exploitation ability. In order to improve the searching ability of the dung beetle optimization algorithm, a mixed-strategy dung beetle optimization algorithm is proposed. The Sobol sequence is used to initialize the population in order to make the dung beetle population better traverse the whole solution space. The golden sine algorithm is added to the ball-rolling dung beetle position updating stage to improve the convergence speed and searching accuracy. And the hybrid variation operator is introduced for perturbation to improve the algorithm’s ability to jump out of the local optimum. The improved algorithms are tested on eight benchmark functions and compared with the gray wolf optimization algorithm, the whale optimization algorithm and the dung beetle optimization algorithm to verify the effectiveness of the three improved strategies. The results show that the dung beetle optimization algorithm with mixed strategies has significant enhancement in convergence speed, robustness and optimization search accuracy.

Key words: dung beetle optimizer , Sobol sequence, golden sine algorithm, mix mutation operator

中图分类号: 

  • TP301.6